已知點(diǎn)軸上的動(dòng)點(diǎn),點(diǎn)軸上的動(dòng)點(diǎn),點(diǎn)為定點(diǎn),且滿足,.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)過(guò)點(diǎn)且斜率為的直線與曲線交于兩點(diǎn),,試判斷在軸上是否存在點(diǎn),使得成立,請(qǐng)說(shuō)明理由.
(Ⅰ)(Ⅱ)在軸上存在點(diǎn),使得成立

試題分析:(Ⅰ)設(shè),則由,得的中點(diǎn).        ……2分
.
 , .
, 即.
∴動(dòng)點(diǎn)的軌跡的方程.                                         ……5分
(Ⅱ)設(shè)直線的方程為,由  消去.
設(shè),, 則.                      ……6分
假設(shè)存在點(diǎn)滿足條件,則,


.                                         ……9分
,
∴關(guān)于的方程有解 .                             ……11分
∴假設(shè)成立,即在軸上存在點(diǎn),使得成立.         ……12分
點(diǎn)評(píng):每年高考都會(huì)考查圓錐曲線問(wèn)題,此類題目一般運(yùn)算量較大,主要考查學(xué)生的運(yùn)算求解能力和分析問(wèn)題、解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(1)求橢圓方程;
(2)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓和雙曲線有相同的焦點(diǎn),則實(shí)數(shù)的值是 (    )
A.B.C.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知曲線恰有三個(gè)點(diǎn)到直線距離為,則     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求由拋物線與它在點(diǎn)和點(diǎn)的切線所圍成的區(qū)域的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知經(jīng)過(guò)拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),滿足,則弦的中點(diǎn)到準(zhǔn)線的距離為____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知命題:拋物線的準(zhǔn)線方程為;命題:平面內(nèi)兩條直線的斜率相等是兩條直線平行的充分不必要條件;則下列命題是真命題的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓右頂點(diǎn)到直線的距離為,離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓與y軸負(fù)半軸的交點(diǎn),設(shè)直線,是否存在實(shí)數(shù)m,使直線與(Ⅰ)中的橢圓有兩個(gè)不同的交點(diǎn)M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在同一坐標(biāo)系中,方程 (>> 0 )的曲線大致是

查看答案和解析>>

同步練習(xí)冊(cè)答案