【題目】某多面體的三視圖如圖所示,則該多面體的各棱中,最長棱的長度為( )

A. B. C. 2 D. 1

【答案】A

【解析】由三視圖可知該多面體的直觀圖為如圖所示的四棱錐

其中,四邊形為邊長為1的正方形,,且,.

,

,,

∴最長棱為

故選A.

點(diǎn)睛: 思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對(duì)正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:①首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;②觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;③畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的方程為x=﹣2,且直線lx軸交于點(diǎn)M,圓O:x軸交于A,B兩點(diǎn)如圖).

(1)M點(diǎn)的直線l1交圓于P、Q兩點(diǎn),且O點(diǎn)到直線l1的距離為,求直線l1的方程;

(2)求以l為準(zhǔn)線,中心在原點(diǎn),且短軸長為圓O的半徑的橢圓方程;

(3)M點(diǎn)的圓的切線l2(2)中的一個(gè)橢圓于C、D兩點(diǎn),其中C、D兩點(diǎn)在x軸上方,求線段CD的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從全校參加數(shù)學(xué)競賽的學(xué)生的試卷中抽取一個(gè)樣本,考察競賽的成績分布,將樣本分成5組,繪制成頻率分布直方圖,圖中從左到右各組的小長方形的高之比為13642,最右邊一組的頻數(shù)是6,請(qǐng)結(jié)合直方圖提供的信息,解答下列問題:

1)樣本的容量是多少?

2)列出頻率分布表.

3)成績落在哪一組內(nèi)的人數(shù)最多?并求出該組的頻數(shù)、頻率.

4)估計(jì)這次競賽中,成績不低于60分的學(xué)生人數(shù)占總?cè)藬?shù)的百分比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4個(gè)男同學(xué),3個(gè)女同學(xué)站成一排.

13個(gè)女同學(xué)必須排在一起,有多少種不同的排法?

2)任何兩個(gè)女同學(xué)彼此不相鄰,有多少種不同的排法?

3)甲、乙兩人相鄰,但都不與丙相鄰,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的圖象關(guān)于原點(diǎn)對(duì)稱,其中a為常數(shù).

1)求a的值,并寫出函數(shù)fx)的單調(diào)區(qū)間(不需要求解過程);

2)若關(guān)于x的方程在[23]上有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且數(shù)列{Sn}是以2為公比的等比數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)求a1+a3+…+a2n1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在直角坐標(biāo)系中,的圓心角為所在圓的半徑為1,角θ的終邊與交于點(diǎn)C.


1)當(dāng)C的中點(diǎn)時(shí),D為線段OA上任一點(diǎn),求的最小值;

2)當(dāng)C上運(yùn)動(dòng)時(shí),D,E分別為線段OAOB的中點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若a是從12,3三個(gè)數(shù)中任取一個(gè),b是從2,3,45四個(gè)數(shù)中任取一個(gè),那么恒成立的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在軸上,焦距為2,且經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)設(shè)點(diǎn),點(diǎn)為曲線上任一點(diǎn),求點(diǎn)到點(diǎn)距離的最大值;

(3)在(2)的條件下,當(dāng)時(shí),設(shè)的面積為O是坐標(biāo)原點(diǎn),Q是曲線C上橫坐標(biāo)為a的點(diǎn)),以為邊長的正方形的面積為,若正數(shù)滿足,問是否存在最小值,若存在,請(qǐng)求出此最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案