設(shè)復(fù)數(shù)z1=1-2i,z2=x+i(x∈R),若z1•z2為實(shí)數(shù),則x=
1
2
1
2
分析:由復(fù)數(shù)z1=1-2i,z2=x+i(x∈R),求得z1•z2=(x+2)+(1-2x)i,再由z1•z2為實(shí)數(shù),得到1-2x=0,由此能求出x.
解答:解:∵復(fù)數(shù)z1=1-2i,z2=x+i(x∈R),
∴z1•z2=(1-2i)(x+i)
=x-2xi+i+2
=(x+2)+(1-2x)i,
∵z1•z2為實(shí)數(shù),
∴1-2x=0,
解得x=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查復(fù)數(shù)的乘除運(yùn)算,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z1=1-2i,z2=x+i(x∈R),若z1
z2
為實(shí)數(shù),則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z1=1-2i,z2=1+i,若復(fù)數(shù)z1=z•z2,則z=( 。
A、2+i
B、2-i
C、-1-
3
2
i
D、
3
2
-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z1=1+2i,z2=2-i,則
z1z2
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z1=1-2i,z2=1+i,則復(fù)數(shù)z=
z1
z2
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案