【題目】已知雙曲線的左、右頂點(diǎn)分別為,直線與雙曲線交于,直線交直線于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)若點(diǎn)的軌跡與矩形的四條邊都相切,探究矩形對(duì)角線長(zhǎng)是否為定值,若是,求出此值;若不是,說(shuō)明理由.
【答案】(1) ;(2)見(jiàn)解析.
【解析】試題分析:(1)利用交軌法,求出點(diǎn)的軌跡方程;(2) 設(shè)點(diǎn),過(guò)點(diǎn)作橢圓的切線,則切線的斜率存在且不為0,設(shè)斜率為,則切線方程為,
代入到橢圓方程整理,得.由得到
,這個(gè)關(guān)于的一元二次方程的兩根即為與,
由,可知,即,即點(diǎn)為矩形外接圓的圓心,其中為直徑,大小為,故矩形對(duì)角線長(zhǎng)為定值.
試題解析:
(1)設(shè)點(diǎn), , ,其中.
由題意,得, .
由,①
,②
兩式相乘得.
∵,
∴,
代入上式得
,
由①與,得,
①÷②,得.
故點(diǎn)的軌跡方程為.
(2)設(shè)點(diǎn),過(guò)點(diǎn)作橢圓的切線,
則切線的斜率存在且不為0,設(shè)斜率為,
則切線方程為,
代入到橢圓方程整理,
得.
,
即.
這個(gè)關(guān)于的一元二次方程的兩根即為與,
由,
得.
設(shè)為坐標(biāo)原點(diǎn),故可知,
同理,得,
即點(diǎn)為矩形外接圓的圓心,其中為直徑,大小為,
故矩形對(duì)角線長(zhǎng)為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費(fèi)者,工藝品的平面設(shè)計(jì)如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點(diǎn)為半圈上一點(diǎn)(異于,),點(diǎn)在線段上,且滿足.已知,,設(shè).
(1)為了使工藝禮品達(dá)到最佳觀賞效果,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),工藝禮品達(dá)到最佳觀賞效果;
(2)為了工藝禮品達(dá)到最佳穩(wěn)定性便于收藏,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),取得最大值,并求該最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 有兩個(gè)平面互相平行,其余各面都是平行四邊形的多面體是棱柱
B. 四棱錐的四個(gè)側(cè)面都可以是直角三角形
C. 有兩個(gè)平面互相平行,其余各面都是梯形的多面體是棱臺(tái)
D. 棱臺(tái)的各側(cè)棱延長(zhǎng)后不一定交于一點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到如圖2中△A1BE的位置,得到四棱錐A1-BCDE.
(Ⅰ)證明:CD⊥平面A1OC;
(Ⅱ)當(dāng)平面A1BE⊥平面BCDE時(shí),四棱錐A1-BCDE的體積為36,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】母線長(zhǎng)為,底面半徑為的圓錐內(nèi)有一球,與圓錐的側(cè)面、底面都相切,現(xiàn)放入一些小球,小球與圓錐底面、側(cè)面、球都相切,這樣的小球最多可放入__________個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為拋物線內(nèi)一定點(diǎn),過(guò)作兩條直線交拋物線于,且分別是線段的中點(diǎn).
(1)當(dāng)時(shí),求△的面積的最小值;
(2)若且,證明:直線過(guò)定點(diǎn),并求定點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“既要金山銀山,又要綠水青山”。某風(fēng)景區(qū)在一個(gè)直徑為米的半圓形花圓中設(shè)計(jì)一條觀光線路。打算在半圓弧上任選一點(diǎn)(與不重合),沿修一條直線段小路,在路的兩側(cè)(注意是兩側(cè))種植綠化帶;再沿弧修一條弧形小路,在小路的一側(cè)(注意是一側(cè))種植綠化帶,小路與綠化帶的寬度忽略不計(jì)。
(1)設(shè)(弧度),將綠化帶的總長(zhǎng)度表示為的函數(shù);
(2)求綠化帶的總長(zhǎng)度的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率是,且橢圓經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線: 與圓相切:
(。┣髨A的標(biāo)準(zhǔn)方程;
(ⅱ)若直線過(guò)定點(diǎn),與橢圓交于不同的兩點(diǎn),與圓交于不同的兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年12月10日,我國(guó)科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎(jiǎng),以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國(guó)內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長(zhǎng)勢(shì)與海撥高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為,并對(duì)它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)的值評(píng)定人工種植的青蒿的長(zhǎng)勢(shì)等級(jí),若,則長(zhǎng)勢(shì)為一級(jí);若,則長(zhǎng)勢(shì)為二極;若,則長(zhǎng)勢(shì)為三級(jí),為了了解目前人工種植的青蒿的長(zhǎng)勢(shì)情況,研究人員隨機(jī)抽取了10塊青蒿人工種植地,得到如下結(jié)果:
種植地編號(hào) | |||||
種植地編號(hào) | |||||
(1)若該地有青蒿人工種植地180個(gè),試估計(jì)該地中長(zhǎng)勢(shì)等級(jí)為三級(jí)的個(gè)數(shù);
(2)從長(zhǎng)勢(shì)等級(jí)為一級(jí)的青蒿人工種植地中隨機(jī)抽取兩個(gè),求這兩個(gè)人工種植地的綜合指標(biāo)均為4個(gè)概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com