中,
,則此三角形解的情況是 ( )
試題分析:因為
,且a>b,所以此三角形有一個解。
點評:正弦定理通常用來解決:①已知兩角和任一邊,求另一角和其他兩邊;②已知兩邊和其中一邊的對角,求另一邊和其他兩角。對于②這種類型的題,一定要注意判斷解的個數(shù),其實這種情況下用余弦定理更好些,可以免掉判斷解的個數(shù)。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖測量河對岸的塔高AB時,可以選與塔底B在同一水平面 內(nèi)的兩個測點C與D.現(xiàn)測得∠BCD=α,∠BDC=β,CD=s ,并在點C測得塔頂A的仰角為
,求塔高AB.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在
中,角A,B,C所對邊分別為a,b,c,且
,面積
,則
等于
A. | B.5 | C. | D.25 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若
,則
的最大值是
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在
中,若
,則
的形狀是 ( )
A.銳角三角形 | B.直角三角形 | C.鈍角三角形 | D.不能確定 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在
中,角A,B,C的對邊分別是
,
,
,已知
,
①若
的面積等于
,求
,
;②若
,求
的面積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
某人在C點測得某塔在南偏西80°的O處,塔頂A的仰角為45°,此人沿南偏東40°方向前進10米到D處,測得塔頂A的仰角為30°,求塔OA的高度?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在
中,若
,則
的形狀是( )
A.鈍角三角形 | B.直角三角形 |
C.銳角三角形 | D.不能確定 |
查看答案和解析>>