3.在等比數(shù)列{an}中,a1=3,a1+a2+a3=9,則a4+a5+a6等于( 。
A.9B.72C.9或72D.9或-72

分析 設(shè)公比為q,由題意求出q,再根據(jù)a4+a5+a6=(a1+a2+a3)q3=9q3,即可求出答案.

解答 解:∵a1=3,a1+a2+a3=9,設(shè)公比為q,
∴a1+a1q+a1q2=9,
即3+3q+3q2=9,
解得q=-2或q=1,
∴a4+a5+a6=(a1+a2+a3)q3=9q3,
當(dāng)q=1時(shí),a4+a5+a6=9,
當(dāng)q=2時(shí),a4+a5+a6=-72,
故選:D

點(diǎn)評(píng) 本題考查了等比數(shù)列的性質(zhì)和定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.動(dòng)點(diǎn)P在直線x+y-4=0上,動(dòng)點(diǎn)Q在直線x+y=8上,則|PQ|的最小值為(  )
A.$\sqrt{10}$B.2$\sqrt{2}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知直線lk:y=kx+k2(k∈R),下列說(shuō)法中正確的是①③④.(注:把你認(rèn)為所有正確選項(xiàng)的序號(hào)均填上)
①lk與拋物線$y=-\frac{x^2}{4}$均相切;      
②lk與圓x2+(y+1)2=1均無(wú)交點(diǎn);
③存在直線l,使得l與lk均不相交;   
④對(duì)任意的i,j∈R,直線li,lj相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)y=|x-1|+|x+7|的最小值為n,則二項(xiàng)式(x+$\frac{1}{x}$)n展開(kāi)式中$\frac{1}{{x}^{2}}$的系數(shù)為56(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x2-x,g(x)=lnx.
(Ⅰ)求函數(shù)y=xg(x)的單調(diào)區(qū)間;
(Ⅱ)若t∈[$\frac{1}{2}$,1],求y=f[xg(x)+t]在x∈[1,e]上的最小值(結(jié)果用t表示);
(Ⅲ)關(guān)于x的不等式g(x)-$\frac{a}{2}$f(x)≤($\frac{3}{2}$a-1)x-1恒成立,求整數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知集合A={-1,0},B={0,2},則A∪B={-1,0,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=cos($\frac{1}{2}$x+$\frac{π}{6}$)的圖象向右平移φ(φ>0)個(gè)單位,所得函數(shù)圖象關(guān)于y軸對(duì)稱,則φ的最小值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若冪函數(shù)f(x)=xa的圖象過(guò)點(diǎn)(4,2),則f(9)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)$y=sin(\frac{π}{4}x-\frac{π}{2})+3$的最小正周期是( 。
A.B.C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案