【題目】已知橢圓C,(ab0)過點(1)且離心率為

1)求橢圓C的方程;

(2)設橢圓C的右頂點為P,過定點(2,﹣1)的直線lykx+m與橢圓C相交于異于點PA,B兩點,若直線PAPB的斜率分別為k1,k2,求k1+k2的值.

【答案】(1);(2)1

【解析】

(1)根據(jù)題意列出關于滿足的關系式再求解即可.

(2)聯(lián)立直線與橢圓的方程,再設Ax1,y1),Bx2,y2),P(2,0),進而表達出直線PA,PB的斜率,再利用韋達定理化簡求解即可.

(1)由題意可得,解得a2=4,b2=1,

則橢圓的方程為y2=1,

(2)由題意,過定點(2,﹣1)的直線lykx+m,

∴﹣1=2k+m,

m=﹣2k﹣1

Ax1y1),Bx2,y2),P(2,0)

聯(lián)立得(1+4k2x2+8kmx+4m2﹣4=0.

△=64k2m2﹣4(1+4k2)(4m2﹣4)=16(4k2m2+1)>0.

x1+x2,x1x2

∵直線PAPB的斜率分別為k1,k2,

k1+k2

kk2k2k2k﹣(2k﹣1)=1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,為正三角形,為棱的中點,,,平面平面

1)求證:平面平面;

2)若是棱上一點,與平面所成角的正弦值為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,點

(1)求點與拋物線的焦點的距離;

(2)設斜率為的直線與拋物線交于兩點,若的面積為,求直線的方程;

(3)是否存在定圓,使得過曲線上任意一點作圓的兩條切線,與曲線交于另外兩點時,總有直線也與圓相切?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某紀念章從某年某月某日起開始上市,通過市場調(diào)査,得到該紀念章每枚的市場價(單位:元)與上市時間(單位:天)的數(shù)據(jù)如下:

上市時間

市場價

(1)根據(jù)上表數(shù)計,從下列函數(shù)中選取一個恰當?shù)暮瘮?shù)描述該紀念章的市場價與上市時間的變化關系并說明理由:①;②;③;④;

(2)利用你選取的函數(shù),求該紀念章市場價最低時的上市天數(shù)及最低的價格.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前項和為,若,.

1)證明:當時,;

2)求數(shù)列的通項公式;

3)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)與函數(shù)在公共點處有相同的切線,且上恒成立.

i)求的值;(為函數(shù)的導函數(shù))

ii)求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家每年都會對中小學生進行體質(zhì)健康監(jiān)測,一分鐘跳繩是監(jiān)測的項目之一.今年某小學對本校六年級300名學生的一分鐘跳繩情況做了統(tǒng)計,發(fā)現(xiàn)一分鐘跳繩個數(shù)最低為10,最高為189.現(xiàn)將跳繩個數(shù)分成,,,,6組,并繪制出如下的頻率分布直方圖.

1)若一分鐘跳繩個數(shù)達到160為優(yōu)秀,求該校六年級學生一分鐘跳繩為優(yōu)秀的人數(shù);

2)上級部門要對該校體質(zhì)監(jiān)測情況進行復查,發(fā)現(xiàn)每組男、女學生人數(shù)比例有很大差別,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為.試估計此校六年級男生一分鐘跳繩個數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結果保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當時,,則下列命題正確的是(

A.時,

B.函數(shù)3個零點

C.的解集為

D.,都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設有一組圓,下列四個命題:①存在一條定直線與所有的圓均相切;②存在一條定直線與所有的圓均相交;③存在一條定直線與所有的圓均不相交;④所有的圓均不經(jīng)過原點;其中真命題的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案