【題目】已知不等式 對(duì) 恒成立,則實(shí)數(shù) 的取值范圍是 ( )
A.
B.
C.
D.

【答案】A
【解析】設(shè)f(x)=x3+x2b,x∈(0,1],可得f′(x)=3x2+2x>0在(0,1]恒成立,可得f(x)在(0,1]遞增,

f(1)取得最大值2b;

設(shè) ,x∈(0,1],則

可得g′(x)0在(0,1]恒成立,g(x)在(0,1]遞減,g(1)取得最小值3,則2b3,解得b1.

所以答案是:A.


【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1解關(guān)于的不等式;

2在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】最新公布的《道路交通安全法》和《道路交通安全法實(shí)施條例》對(duì)車速、安全車距以及影響駕駛?cè)朔磻?yīng)快慢等因素均有詳細(xì)規(guī)定,這些規(guī)定說(shuō)到底主要與剎車距離有關(guān),剎車距離是指從駕駛員發(fā)現(xiàn)障礙到制動(dòng)車輛,最后完全停止所行駛的距離,即:剎車距離=反應(yīng)距離+制動(dòng)距離,反應(yīng)距離=反應(yīng)時(shí)間×速率,制動(dòng)距離與速率的平方成正比,某反應(yīng)時(shí)間為的駕駛員以的速率行駛,遇緊急情況,汽車的剎車距離為

)試將剎車距離表示為速率的函數(shù).

)若該駕駛員駕駛汽車在限速為的公路上行駛,遇緊急情況,汽車的剎車距離為,試問(wèn)該車是否超速?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為的正方形與菱形所在平面互相垂直, 中點(diǎn).

(1)求證: 平面

(2)若,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下面三個(gè)類比結(jié)論:①向量 ,有 ;類比復(fù)數(shù) ,有 ;
②實(shí)數(shù) 、 ;類比向量 ,有 ;
③實(shí)數(shù) 、 ,則 ;類比復(fù)數(shù) ,有 ,則 .其中類比結(jié)論正確的命題個(gè)數(shù)為 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 有兩個(gè)不相等的零點(diǎn)x1 , x2 , 則 + 的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某加油站20名員工日銷售量的頻率分布直方圖,如圖所示:

1)補(bǔ)全該頻率分布直方圖在[2030)的部分,并分別計(jì)算日銷售量在 [10,20),[20,30)的員工數(shù);

2)在日銷量為[10,30)的員工中隨機(jī)抽取2人,求這兩名員工日銷量在 [20,30)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,an=cos (n∈N*
(1)試將an+1表示為an的函數(shù)關(guān)系式;
(2)若數(shù)列{bn}滿足bn=1﹣ (n∈N*),猜想an與bn的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在D上的函數(shù) ,若滿足: ,都有 成立,則稱 D上的有界函數(shù),其中M稱為函數(shù) 的上界.
(I)設(shè) ,證明: 上是有界函數(shù),并寫(xiě)出 所有上界的值的集合;
(II)若函數(shù) 上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案