【題目】若X是一個集合,是一個以X的某些子集為元素的集合,且滿足:①X屬于,屬于;②中任意多個元素的并集屬于;③中任意多個元素的交集屬于.則稱是集合X上的一個拓撲.已知集合,對于下面給出的四個集合:
①;
②;
③;
④.
其中是集合X上的拓撲的集合的序號是________.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體中,E為AB中點,F在線段上.給出下列判斷:①存在點F使得平面;②在平面內總存在與平面平行的直線;③平面與平面ABCD所成的二面角(銳角)的大小與點F的位置無關;④三棱錐的體積與點F的位置無關.其中正確判斷的有( )
A.①②B.③④C.①③D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年遼寧省正式實施高考改革.新高考模式下,學生將根據(jù)自己的興趣、愛好、學科特長和高校提供的“選考科目要求”進行選課.這樣學生既能尊重自己愛好、特長做好生涯規(guī)劃,又能發(fā)揮學科優(yōu)勢,進而在高考中獲得更好的成績和實現(xiàn)自己的理想.考改實施后,學生將在高二年級將面臨著的選課模式,其中“3”是指語、數(shù)、外三科必學內容,“1”是指在物理和歷史中選擇一科學習,“2”是指在化學、生物、地理、政治四科中任選兩科學習.某校為了更好的了解學生對“1”的選課情況,學校抽取了部分學生對選課意愿進行調查,依據(jù)調查結果制作出如下兩個等高堆積條形圖:根據(jù)這兩幅圖中的信息,下列哪個統(tǒng)計結論是不正確的( )
A.樣本中的女生數(shù)量多于男生數(shù)量
B.樣本中有學物理意愿的學生數(shù)量多于有學歷史意愿的學生數(shù)量
C.樣本中的男生偏愛物理
D.樣本中的女生偏愛歷史
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市一中學高三年級統(tǒng)計學生的最近20次數(shù)學周測成績(滿分150分),現(xiàn)有甲乙兩位同學的20次成績如莖葉圖所示:
(1)根據(jù)莖葉圖求甲乙兩位同學成績的中位數(shù),并據(jù)此判斷甲乙兩位同學的成績誰更好?
(2)將同學乙的成績的頻率分布直方圖補充完整;
(3)現(xiàn)從甲乙兩位同學的不低于140分的成績中任意選出2個成績,設選出的2個成績中含甲的成績的個數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中華文化博大精深,源遠流長,每年都有大批外國游客入境觀光旅游或者學習等,下面是年至年三個不同年齡段外國入境游客數(shù)量的柱狀圖:
下面說法錯誤的是:( )
A.年至年外國入境游客中,歲年齡段人數(shù)明顯較多
B.年以來,三個年齡段的外國入境游客數(shù)量都在逐年增加
C.年以來,歲外國入境游客增加數(shù)量大于歲外國入境游客增加數(shù)量
D.年,歲外國入境游客增長率大于歲外國入境游客增長率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(數(shù)學文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎上,解答以下問題:已知橢圓的標準方程為 ,將此橢圓繞y軸旋轉一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“五行”是中國古代哲學的一種系統(tǒng)觀,廣泛用于中醫(yī)、堪輿、命理、相術和占卜等方面.古人把宇宙萬物劃分為五種性質的事物,也即分成木、火、土、金、水五大類,并稱它們?yōu)?/span>“五行”.中國古代哲學家用五行理論來說明世界萬物的形成及其相互關系,創(chuàng)造了五行相生相克理論.相生,是指兩類五行屬性不同的事物之間存在相互幫助,相互促進的關系,具體是:木生火,火生土,土生金,金生水,水生木.相克,是指兩類五行屬性不同的事物之間是相互克制的關系,具體是:木克土,土克水,水克火、火克金、金克木.現(xiàn)從分別標有木,火,土,金,水的根竹簽中隨機抽取根,則所抽取的根竹簽上的五行屬性相克的概率為___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)已知圓,圓,動圓與圓外切并且與圓內切,圓心的軌跡為曲線.
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當圓的半徑最長時,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在實數(shù)集上的偶函數(shù)和奇函數(shù)滿足.
(1)求與的解析式;
(2)求證:在區(qū)間上單調遞增;并求在區(qū)間的反函數(shù);
(3)設(其中為常數(shù)),若對于恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com