【題目】已知函數(shù)在處取得極值.
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)(2)
【解析】
先對函數(shù)求導(dǎo),根據(jù)函數(shù) 在處取得極值,求出;
(1)將代入解析式,再由導(dǎo)數(shù)的方法求出其在處的切線斜率,進(jìn)而可求出結(jié)果;
(2)函數(shù)有三個(gè)零點(diǎn),等價(jià)于方程有三個(gè)不等實(shí)根,也即是函數(shù)與直線有三個(gè)不同的交點(diǎn),由導(dǎo)數(shù)的方法研究函數(shù)的極值,即可得出結(jié)果.
解:,
由題意知,所以,即.
所以.
(1)當(dāng)時(shí),,,
所以,,
所以在處的切線方程為,即.
(2)令,則.
設(shè),則與的圖象有三個(gè)交點(diǎn).
,
所以當(dāng)變化時(shí),,的變化情況為
1 | |||||
+ | 0 | - | 0 | + | |
增函數(shù) | 極大值 | 減函數(shù) | 極小值 | 增函數(shù) |
所以,.
又當(dāng)時(shí),;當(dāng)時(shí),,
所以,即.
所以的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,底面,,為中點(diǎn).
(1)試在上確定一點(diǎn),使得平面;
(2)點(diǎn)在滿足(1)的條件下,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實(shí)國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民收入也逐年增加.為了更好的制定2019年關(guān)于加快提升農(nóng)民年收入力爭早日脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了2018年50位農(nóng)民的年收入并制成如下頻率分布直方圖:
附:參考數(shù)據(jù)與公式 ,若 ,則① ;② ;③ .
(1)根據(jù)頻率分布直方圖估計(jì)50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);
(2)由頻率分布直方圖可以認(rèn)為該貧困地區(qū)農(nóng)民年收入 X 服從正態(tài)分布 ,其中近似為年平均收入 近似為樣本方差 ,經(jīng)計(jì)算得:,利用該正態(tài)分布,求:
(i)在2019年脫貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的84.14%的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?
(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪了1000位農(nóng)民.若每個(gè)農(nóng)民的年收入相互獨(dú)立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列函數(shù)的單調(diào)區(qū)間,并指出該函數(shù)在其單調(diào)區(qū)間上是增函數(shù)還是減函數(shù).
(1)f(x)=-;
(2)f(x)=
(3)f(x)=-x2+2|x|+3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某海濱浴場海浪的高度y(米)是時(shí)間t的(0≤t≤24,單位:小時(shí))函數(shù),記作y=f(t),下表是某日各時(shí)的浪高數(shù)據(jù):
t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(m) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
經(jīng)長期觀測,y=f(t)的曲線可近似地看成是函數(shù)y=Acosωt+b的圖象.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Acosωt+b的最小正周期T、振幅A及函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時(shí)才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8時(shí)到晚上20時(shí)之間,有多長時(shí)間可供沖浪者進(jìn)行運(yùn)動(dòng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三(3)班學(xué)生要安排畢業(yè)晚會的3個(gè)音樂節(jié)目,2個(gè)舞蹈節(jié)目和1個(gè)曲藝節(jié)目的演出順序,要求2個(gè)舞蹈節(jié)目不連排,3個(gè)音樂節(jié)目恰有2個(gè)節(jié)目連排,則不同排法的種數(shù)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-ax-1,其中e是自然對數(shù)的底數(shù),實(shí)數(shù)a是常數(shù).
(1)設(shè)a=e,求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com