已知函數(shù)f(x)=
2ax-a2+1x2+1
(x∈R),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a≠0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值.
分析:(I)把a(bǔ)=1代入,先對(duì)函數(shù)求導(dǎo),然后求f(2),根據(jù)導(dǎo)數(shù)的幾何意義可知,該點(diǎn)切線的斜率k=f′(2),從而求出切線方程.
(II)先對(duì)函數(shù)求導(dǎo),分別解f′(x)>0,f′(x)<0,解得函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的單調(diào)性求函數(shù)的極值.
解答:解:
(I)解:當(dāng)a=1時(shí),f(x)=
2x
x2+1
,f(2)=
4
5

f′(x)=
2(x2+1)-2x.2x
(x2+1)2
=
2-2x2
(x2+1)2
,f′(2)=-
6
25

所以,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y-
4
5
=-
6
25
(x-2)
,即6x+25y-32=0.

(II)解:f′(x)=
2a(x2+1)-2x(2ax-a2+1)
(x2+1)2
=
-2(x-a)(ax+1)
(x2+1)2

由于a≠0,以下分兩種情況討論.
(1)當(dāng)a>0時(shí),令f'(x)=0,得到x1=-
1
a
,x2=a
.當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:
精英家教網(wǎng)
所以f(x)在區(qū)間(-∞,-
1
a
)
,(a,+∞)內(nèi)為減函數(shù),在區(qū)間(-
1
a
,a)
內(nèi)為增函數(shù).
函數(shù)f(x)在x1=-
1
a
處取得極小值f(-
1
a
)
,且f(-
1
a
)=-a2

函數(shù)f(x)在x2=a處取得極大值f(a),且f(a)=1.
(2)當(dāng)a<0時(shí),令f'(x)=0,得到x1=a,x2=-
1
a
.當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:
精英家教網(wǎng)
所以f(x)在區(qū)間(-∞,a),(-
1
a
,+∞)
內(nèi)為增函數(shù),在區(qū)間(a,-
1
a
)
內(nèi)為減函數(shù).
函數(shù)f(x)在x1=a處取得極大值f(a),且f(a)=1.
函數(shù)f(x)在x2=-
1
a
處取得極小值f(-
1
a
)
,且f(-
1
a
)=-a2
點(diǎn)評(píng):本小題考查導(dǎo)數(shù)的幾何意義,兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值等基礎(chǔ)知識(shí),考查運(yùn)算能力及分類討論的思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對(duì)稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對(duì)一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案