設(shè)f(x)是周期為2的偶函數(shù),當(dāng)0≤x≤1時,f(x)=2x(1-x),則f(-
5
2
)=
 
考點:函數(shù)的周期性,函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和周期性之間的關(guān)系,進行轉(zhuǎn)化即可得到結(jié)論.
解答: 解:∵f(x)是周期為2的偶函數(shù),
∴f(-
5
2
)=f(-
5
2
+2)=f(-
1
2
)=f(
1
2
),
∵當(dāng)0≤x≤1時,f(x)=2x(1-x),
∴f(
1
2
)=2×
1
2
(1-
1
2
)=
1
2
,
故∴f(-
5
2
)=
1
2
,
故答案為:
1
2
點評:本題主要考查函數(shù)值的計算,利用函數(shù)的周期性和奇偶性進行轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-
3
y+1=0,一個圓的圓心C在x軸正半軸上,且該圓與直線l和y軸均相切.
(1)求該圓的方程;
(2)若直線:mx+y+
1
2
m=0與圓C交于A,B兩點,且|AB|=
3
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的偽代碼中,若輸入的a,b,c依次是1,2,3,則輸出的c的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-8|,若a≤b≤0,且f(a)=f(b),則a+b的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1+x+x2)(x2-
1
x
6的展開式中的常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(n)表示n2-1(n∈N*)的各位數(shù)字之和,如152-1=224,2+2+4=8,f(15)=8,記f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)],k∈N*,則f1(5)+f2(5)+f3(5)…+f100(5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
f(x-5),x>0
2x+
π
6
0
cos3tdt,x≤0
,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有如圖所示的程序,運行該程序,要使輸出的結(jié)果是30,在橫線處應(yīng)添加i的條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知整數(shù)對的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,則第548個數(shù)對是
 

查看答案和解析>>

同步練習(xí)冊答案