函數(shù)f(x)=(ω>0),|φ|<)的部分圖象如圖所示,則f(π)=( )

A.4
B.2
C.2
D.
【答案】分析:由圖象的頂點坐標(biāo)求出A,根據(jù)周期求得ω,再由sin[2(-)+φ]=0以及 φ的范圍求出 φ的值,從而得到函數(shù)的解析式,進(jìn)而求得f(π)的值.
解答:解:由函數(shù)的圖象可得A=2,根據(jù)半個周期==,解得ω=2.
由圖象可得當(dāng)x=-時,函數(shù)無意義,即函數(shù)的分母等于零,即 sin[2(-)+φ]=0.
再由|φ|<,可得 φ=
故函數(shù)f(x)=,∴f(π)=4,
故選A.
點評:本小題主要考查函數(shù)與函數(shù)的圖象,求函數(shù)的值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
ax
,(a∈R).
(1)當(dāng)a=2時,求函數(shù)p(x)=f(x)+g(x)的單調(diào)區(qū)間;
(2)若函數(shù)h(x)=f(x)-g(x)在[1,e]上的最小值為3,求a的值;
(3)若存在x0∈[1,+∞),使得f(x0)>x02+g(x0)能成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-bx2圖象上一點P(2,f(2))處的切線方程為y=-3x+2ln2+2.
(Ⅰ)求a,b的值;
(Ⅱ)若方程f(x)+m=0在[
1e
,e]
內(nèi)有兩個不等實根,求m的取值范圍(其中e為自然對數(shù)的底數(shù));
(Ⅲ)令g(x)=f(x)-kx,若g(x)的圖象與x軸交于A(x1,0),B(x2,0)(其中x1<x2),AB的中點為C(x0,0),求證:g(x)在x0處的導(dǎo)數(shù)g′(x0)≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(0)=1,f(x+1)=
3
2
+f(x) (x∈R),則數(shù)列{f(n)}的前20項和為( 。
A、305B、315
C、325D、335

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
22x+1
是奇函數(shù)(a∈R).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)試判斷函數(shù)f(x)在(-∞,+∞)上的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若對任意的t∈R,不等式f(t2-(m-2)t)+f(t2-m-1)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)對任意實數(shù)x、y滿足f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(
π
2
)=1
.給出下列結(jié)論:f(
π
4
)=
1
2
;②f(x)為奇函數(shù);③f(x)為周期函數(shù);④f(x)在(0,x)內(nèi)單調(diào)遞減.其中正確的結(jié)論序號是( 。
A、②③B、②④C、①③D、①④

查看答案和解析>>

同步練習(xí)冊答案