有一批貨物需要用汽車(chē)從生產(chǎn)商所在城市甲運(yùn)至銷(xiāo)售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過(guò)這兩條公路所用的時(shí)間互不影響。
據(jù)調(diào)查統(tǒng)計(jì),通過(guò)這兩條公路從城市甲到城市乙的200輛汽車(chē)所用時(shí)間的頻數(shù)分布如下表:
所用的時(shí)間(天數(shù)) | 10 | 11 | 12 | 13 |
通過(guò)公路1的頻數(shù) | 20 | 40 | 20 | 20 |
通過(guò)公路2的頻數(shù) | 10 | 40 | 40 | 10 |
(1)A選路1,B選路2; (2)B的利潤(rùn)大
解析試題分析:(I)求出頻率分布表,計(jì)算汽車(chē)A在約定日期(某月某日)的前11天出發(fā)選擇公路1,2將貨物運(yùn)往城市乙的概率;汽車(chē)B在約定日期(某月某日)的前12天出發(fā)選擇公路1,2將貨物運(yùn)往城市乙的概率,即可得到結(jié)論;
(II)分別確定汽車(chē)A、B為生產(chǎn)商獲得毛利潤(rùn)的概率分布列,求出期望,比較期望值,即可得到結(jié)論
解:(I)頻率分布表,如下:
設(shè)A1,A2分別表示汽車(chē)A在約定日期(某月某日)的前11天出發(fā)選擇公路1,2將貨物運(yùn)往城市乙;B1,B2分別表示汽車(chē)B在約定日期(某月某日)的前12天出發(fā)選擇公路1,2將貨物運(yùn)往城市乙.所用的時(shí)間(天數(shù)) 10 11 12 13 通過(guò)公路1的頻數(shù) 0.2 0.4 0.2 0.2 通過(guò)公路2的頻數(shù) 0.1 0.4 0.4 0.1
∵P(A1)=0.2+0.4=0.6,P(A2)=0.1+0.4=0.5,∴汽車(chē)A選擇公路1,
∵P(B1)=0.2+0.4+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∴汽車(chē)A選擇公路2;
(II)設(shè)X表示汽車(chē)A選擇公路1,銷(xiāo)售商支付給生產(chǎn)商的費(fèi)用,則X=42,40,38,36
X的分布列如下:
∴E(X)=42×0.2+40×0.4+38×0.2+36×0.2=39.2 X 42 40 38 36 P 0.2 0.4 0.2 0.2
∴汽車(chē)A選擇公路1時(shí)的毛利潤(rùn)為39.2-3.2=36.0(萬(wàn)元)
設(shè)Y為汽車(chē)B選擇公路2時(shí)的毛利潤(rùn),則Y=42.4,40.4,38.4,36.4
分布列如下
∴E(Y)=42.4×0.1+40.4×0.4+38.4×0.4+36.4×0.1=39.4 Y 42.4 40.4 38.4 36.4 P 0.1 0.4 0.4 0.1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某商場(chǎng)準(zhǔn)備在五一勞動(dòng)節(jié)期間舉行促銷(xiāo)活動(dòng),根據(jù)市場(chǎng)調(diào)查,該商場(chǎng)決定從3種服裝商品、2種家電商品、4種日用商品中,選出3種商品進(jìn)行促銷(xiāo)活動(dòng).
(Ⅰ)試求選出的3種商品中至少有一種日用商品的概率;
(Ⅱ)商場(chǎng)對(duì)選出的A商品采用的促銷(xiāo)方案是有獎(jiǎng)銷(xiāo)售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高90元,同時(shí)允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得一定數(shù)額的獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否是等可能的,請(qǐng)問(wèn):商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷(xiāo)方案對(duì)自己有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
養(yǎng)路處建造無(wú)底的圓錐形倉(cāng)庫(kù)用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉(cāng)庫(kù)的底面直徑為12米,高4米。養(yǎng)路處擬另建一個(gè)更大的圓錐形倉(cāng)庫(kù),以存放更多食鹽。現(xiàn)有兩種方案:一是新建的倉(cāng)庫(kù)的底面直徑比原來(lái)增加4米(高不變);二是高度增加4米(底面直徑不變)。
分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的體積;
分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的表面積;
哪個(gè)方案更經(jīng)濟(jì)些?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某水域一艘裝載濃硫酸的貨船發(fā)生側(cè)翻,導(dǎo)致濃硫酸泄漏,對(duì)河水造成了污染.為減
少對(duì)環(huán)境的影響,環(huán)保部門(mén)迅速反應(yīng),及時(shí)向污染河道投入固體堿,個(gè)單位的固體堿在水中
逐漸溶化,水中的堿濃度與時(shí)間(小時(shí))的關(guān)系可近似地表示為:
,只有當(dāng)污染河道水中堿的濃度不低于時(shí),才能對(duì)污
染產(chǎn)生有效的抑制作用.
(1)如果只投放1個(gè)單位的固體堿,則能夠維持有效的抑制作用的時(shí)間有多長(zhǎng)?
(2)第一次投放1單位固體堿后,當(dāng)污染河道水中的堿濃度減少到時(shí),馬上再投放1個(gè)單
位的固體堿,設(shè)第二次投放后水中堿濃度為,求的函數(shù)式及水中堿濃度的最大值.
(此時(shí)水中堿濃度為兩次投放的濃度的累加)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)和投資單位:萬(wàn)元).
(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到18萬(wàn)元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).
①若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤(rùn)?
②問(wèn):如果你是廠長(zhǎng),怎樣分配這18萬(wàn)元投資,才能使該企業(yè)獲得最大利潤(rùn)?其最大利潤(rùn)約為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
將52名志愿者分成A,B兩組參加義務(wù)植樹(shù)活動(dòng),A組種植150捆白楊樹(shù)苗,B組種植200捆沙棘樹(shù)苗.假定A,B兩組同時(shí)開(kāi)始種植.
(1)根據(jù)歷年統(tǒng)計(jì),每名志愿者種植一捆白楊樹(shù)苗用時(shí)小時(shí),種植一捆沙棘樹(shù)苗用時(shí)小時(shí).應(yīng)如何分配A,B兩組的人數(shù),使植樹(shù)活動(dòng)持續(xù)時(shí)間最短?
(2)在按(1)分配的人數(shù)種植1小時(shí)后發(fā)現(xiàn),每名志愿者種植一捆白楊樹(shù)苗用時(shí)仍為小時(shí),而每名志愿者種植一捆沙棘樹(shù)苗實(shí)際用時(shí)小時(shí),于是從A組抽調(diào)6名志愿者加入B組繼續(xù)種植,求植樹(shù)活動(dòng)所持續(xù)的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在某服裝批發(fā)市場(chǎng),某種品牌的時(shí)裝當(dāng)季節(jié)將來(lái)臨時(shí),價(jià)格呈上升趨勢(shì),設(shè)這種時(shí)裝開(kāi)始時(shí)定價(jià)為20元,并且每周(7天)漲價(jià)2元,從第6周開(kāi)始保持30元的價(jià)格平穩(wěn)銷(xiāo)售;從第12周開(kāi)始,當(dāng)季節(jié)即將過(guò)去時(shí),平均每周減價(jià)2元,直到第16周周末,該服裝不再銷(xiāo)售。
⑴試建立銷(xiāo)售價(jià)y與周次x之間的函數(shù)關(guān)系式;
⑵若這種時(shí)裝每件進(jìn)價(jià)Z與周次次之間的關(guān)系為Z=,1≤≤16,且為整數(shù),試問(wèn)該服裝第幾周出售時(shí),每件銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com