【題目】已知函數(shù)f(x)=2x , x∈(0,2)的值域為A,函數(shù)g(x)=log2(x﹣2a)+ (a<1)的定義域為B.
(1)求集合A,B;
(2)若BA,求實數(shù)a的取值范圍.
【答案】
(1)解:已知函數(shù)f(x)=2x,x∈(0,2)的值域為A,
∴A=(1,4),
函數(shù)g(x)=log2(x﹣2a)+ (a<1)的定義域為B.
∴B=(2a,a+1),a<1,
(2)解:若BA,則(2a,a+1)(1,4),
∴ ,解得: ≤a<1
【解析】(1)根據(jù)指數(shù)函數(shù)以及對數(shù)函數(shù)的性質(zhì)解出即可;(2)根據(jù)集合的包含關(guān)系得到關(guān)于a的不等式組,解出即可.
【考點精析】通過靈活運用集合的表示方法-特定字母法和函數(shù)的定義域及其求法,掌握①自然語言法:用文字?jǐn)⑹龅男问絹砻枋黾?②列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合.③描述法:{|具有的性質(zhì)},其中為集合的代表元素.④圖示法:用數(shù)軸或韋恩圖來表示集合;求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 為中點.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=loga (a>0,且a≠1).
(1)證明f(x)為奇函數(shù);
(2)求使f(x)>0成立的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 是奇函數(shù),且f(2)= .
(1)求實數(shù)m和n的值;
(2)判斷函數(shù)f(x)在(﹣∞,0)上的單調(diào)性,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在(0,+∞)單調(diào)遞增的函數(shù)是( )
A.y=﹣x2
B.y=2﹣|x|
C.y=| |
D.y=lg|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)在(0,+∞)上單調(diào)遞增的是( )
A.
B.y=(x﹣1)2
C.y=21﹣x
D.y=lg(x+3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=4n,數(shù)列{bn}滿足b1=-3,
bn+1=bn+(2n-3)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的通項公式;
(3)若cn=,求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間.(不需要嚴(yán)格證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com