【題目】已知向量 =(4,3), =(2,﹣1),O為坐標原點,P是直線AB上一點.
(1)若點P是線段AB的中點,求向量 與向量 夾角θ的余弦值;
(2)若點P在線段AB的延長線上,且| |= | |,求點P的坐標.

【答案】
(1)解:∵點P是線段AB的中點,∴點P的坐標為 ,即(3,1),

= =


(2)解:設(shè)P(x,y),由點P在線段AB的延長線上,且 ,

,∴ ,

解得: ,

∴點P的坐標為(﹣2,﹣9).


【解析】(1)利用中點坐標公式可得P,再利用向量夾角公式即可得出.(2)設(shè)P(x,y),由點P在線段AB的延長線上,且 ,可得 ,即 ,利用向量相等即可得出.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】【2017廣東佛山二!如圖,矩形中, , , 邊上,且,將沿折到的位置,使得平面平面.

(Ⅰ)求證:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)A,B為曲線Cy=上兩點,AB的橫坐標之和為4.

(1)求直線AB的斜率;

(2)設(shè)M為曲線C上一點,CM處的切線與直線AB平行,且AMBM,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4―4:坐標系與參數(shù)方程]

在直角坐標系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點坐標;

(2)若C上的點到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。DE、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有極值,且導函數(shù)的極值點是的零點。(極值點是指函數(shù)取極值時對應(yīng)的自變量的值)

求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;

證明:b>3a;

這兩個函數(shù)的所有極值之和不小于,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè) , , 是5個正實數(shù)(可以相等).

證明:一定存在4個互不相同的下標 , , ,使得

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的左焦點為,右頂點為,離心率為.已知是拋物線的焦點, 到拋物線的準線的距離為.

(I)求橢圓的方程和拋物線的方程;

(II)設(shè)上兩點 關(guān)于軸對稱,直線與橢圓相交于點異于點),直線軸相交于點.若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在x∈[ ,2]上,函數(shù)f(x)=x2+px+q與g(x)= + 在同一點取得相同的最小值,那么f(x)在x∈[ ,2]上的最大值是(
A.
B.4
C.8
D.

查看答案和解析>>

同步練習冊答案