若cosθ=1-log
1
2
x,求x的取值范圍.
考點(diǎn):余弦函數(shù)的定義域和值域
專題:函數(shù)的性質(zhì)及應(yīng)用,三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)的性質(zhì)結(jié)合對數(shù)的運(yùn)算即可得到結(jié)論.
解答: 解:∵-1≤cosθ≤1,
∴-1≤1-log
1
2
x≤1,
即0≤log
1
2
x≤2,
解得
1
4
≤x≤1.
點(diǎn)評:本題主要考查對數(shù)的基本運(yùn)算,比較基礎(chǔ)..
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)O(0.0)且與圓C:(x-2)2+y2=3有公共點(diǎn),則直線l的斜率取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a(x2+3)+bx+c,且關(guān)于x的不等式f(x)<2x+3a的解集為(-1,2).
(1)若關(guān)于x的方程f(x)=0有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)不存在正實(shí)數(shù)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
的橢圓過點(diǎn)(
2
2
2
).
(1)求橢圓方程;
(2)設(shè)不過原點(diǎn)O的直線l,與該橢圓交于P,Q兩點(diǎn),直線OP,PQ,OQ的斜率依次為k1、k、k2,滿足k1、k、k2依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+x2+|x-a|,(a是常數(shù),且a≤
1
3

(1)討論f(x)的單調(diào)性;
(2)當(dāng)-2≤x≤1時(shí),f(x)的最大值為
7
2
,最小值為t,求t的值,并寫出相應(yīng)的a值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>0,b>0,ab=4,當(dāng)a+4b取得最小值時(shí),
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3
a
-2
b
=(-2,0,4),
c
=(-2,1,2),
a
c
=2,|
b
|=4,求cos<
b
c
>.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
,圓(x-1)2+y2=4被雙曲線的一條漸近線截得的弦長為
15
,則此雙曲線的離心率為( 。
A、
3
2
B、
2
3
3
C、2
D、
3
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,
AB
AC
=|
AB
-
AC
|=4,M為BC邊的中點(diǎn).則中線AM的長為
 
;△ABC的面積的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案