(本題滿分14分)如圖,已知二次函數(shù),直線l:x = 2,直線l:y = 3tx(其中1< t < 1,t為常數(shù));若直線l、l與函數(shù)的圖象所圍成的封閉圖形如圖(5)陰影所示.(1)求y = ;(2)求陰影面積s關(guān)于t的函數(shù)s = u(t)的解析式;(3)若過(guò)點(diǎn)A(1,m)(m≠4)可作曲線s=u(t)(t∈R)的三條切線,求實(shí)數(shù)m的取值范圍.
(Ⅰ) (Ⅱ)
(1)由圖可知二次函數(shù)的圖象過(guò)點(diǎn)(0,0),(1,0),
則,又因?yàn)閳D象過(guò)點(diǎn)(2,6),∴6=2,, 3分
∴函數(shù)的解析式為;…4分
(2)由得,
∴直線與的圖象的交點(diǎn)橫坐標(biāo)分別為0,,…6分
由定積分的幾何意義知:
,…8分
∵曲線方程為
∴點(diǎn)不在曲線上,設(shè)切點(diǎn)為,則點(diǎn)的坐標(biāo)滿足:
因,故切線的斜率為:
,整理得,…10分
∵過(guò)點(diǎn)可作曲線的三條切線,∴關(guān)于方程有三個(gè)實(shí)根.
設(shè),則,由得,
∵當(dāng)時(shí),在在上單調(diào)遞增,
∵當(dāng)時(shí),在上單調(diào)遞減.
∴函數(shù)的極值點(diǎn)為,…12分
∴關(guān)于當(dāng)成有三個(gè)實(shí)根的充要條件是,
解得,故所求的實(shí)數(shù)的取值范圍是,……14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過(guò)測(cè)量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)
如圖,已知直三棱柱ABC—A1B1C1,,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),
(1)求證:;
(2)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF//平面AEB1;
(3)在棱CC1上是否存在點(diǎn)E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點(diǎn),求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)如圖,正方形、的邊長(zhǎng)都是1,平面平面,點(diǎn)在上移動(dòng),點(diǎn)在上移動(dòng),若()
(I)求的長(zhǎng);
(II)為何值時(shí),的長(zhǎng)最;
(III)當(dāng)的長(zhǎng)最小時(shí),求面與面所成銳二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測(cè) 題型:解答題
(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點(diǎn)。
(1)求證:EF//平面ABC;
(2)求證:平面平面C1CBB1;
(3)求異面直線AB與EB1所成的角。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com