(12分)

給定直線,拋物線

(1)當(dāng)拋物線的焦點在直線上時,求的值

(2)若的三個頂點都在(1)所確定的拋物線上,且點的縱坐標(biāo)為8,的重心恰是拋物線的焦點,求所在直線的方程。

 

【答案】

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•長寧區(qū)二模)設(shè)拋物線C:y2=2px(p>0)的焦點為F,過F且垂直于x軸的直線與拋物線交于P1,P2兩點,已知|P1P2|=8.
(1)求拋物線C的方程;
(2)設(shè)m>0,過點M(m,0)作方向向量為
d
=(1,
3
)
的直線與拋物線C相交于A,B兩點,求使∠AFB為鈍角時實數(shù)m的取值范圍;
(3)①對給定的定點M(3,0),過M作直線與拋物線C相交于A,B兩點,問是否存在一條垂直于x軸的直線與以線段AB為直徑的圓始終相切?若存在,請求出這條直線;若不存在,請說明理由.
②對M(m,0)(m>0),過M作直線與拋物線C相交于A,B兩點,問是否存在一條垂直于x軸的直線與以線段AB為直徑的圓始終相切?(只要求寫出結(jié)論,不需用證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線過拋物線的焦點,并且與拋物線相交于兩點.求證:對于此拋物線的任意給定的一條弦,直線不是的垂直平分線.用反證法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定直線l:y=2x-16,拋物線C:y2=ax(a>0).

(1)當(dāng)拋物線C的焦點在直線l上時,確定拋物線C的方程;

(2)若△ABC的三個頂點都在(1)所確定的拋物線C上,且點A的縱坐標(biāo)ya=8,△ABC的重心恰在拋物線C的焦點上,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三第一學(xué)期8月摸底考試數(shù)學(xué)試卷(解析版) 題型:解答題

給定圓:及拋物線:,過圓心作直線,此直線與上述兩曲線的四個交點,自上而下順次記為,如果線段的長按此順序構(gòu)成一個等差數(shù)列,求直線的方程.

 

 

查看答案和解析>>

同步練習(xí)冊答案