【題目】如圖,某十字路口的花圃中央有一個(gè)底面半徑為的圓柱形花柱,四周斑馬線的內(nèi)側(cè)連線構(gòu)成邊長為的正方形.因工程需要,測量員將使用儀器沿斑馬線的內(nèi)側(cè)進(jìn)行測量,其中儀器的移動速度為,儀器的移動速度為.若儀器與儀器的對視光線被花柱阻擋,則稱儀器在儀器的“盲區(qū)”中.
(1)如圖,斑馬線的內(nèi)側(cè)連線構(gòu)成正方形,儀器在點(diǎn)處,儀器在上距離點(diǎn)處,試判斷儀器是否在儀器的“盲區(qū)”中,并說明理由;
(2)如圖,斑馬線的內(nèi)側(cè)連線構(gòu)成正方形,儀器從點(diǎn)出發(fā)向點(diǎn)移動,同時(shí)儀器從點(diǎn)出發(fā)向點(diǎn)移動,在這個(gè)移動過程中,儀器在儀器的“盲區(qū)”中的時(shí)長為多少?
【答案】(1)是,理由見解析;(2).
【解析】
(1)建立平面直角坐標(biāo)系,求得點(diǎn)、的坐標(biāo),進(jìn)而可得出直線的方程,求出原點(diǎn)到直線的距離,判斷直線與花柱所在圓的位置關(guān)系,由此可得出結(jié)論;
(2)建立平面直角坐標(biāo)系,求出、、、的坐標(biāo),假設(shè)儀器在儀器的“盲區(qū)”中的時(shí)長為,用表示點(diǎn)、的坐標(biāo),并求出直線的方程,利用圓心到直線的距離可得出關(guān)于的不等式,求出的取值范圍,由此可得出結(jié)果.
(1)建立如圖所示的平面直角坐標(biāo)系,則,,所以,
所以直線的方程是,即,
故圓心到直線的距離,
所以圓與直線相交,故儀器在儀器的“盲區(qū)”中;
(2)建立如圖所示的平面直角坐標(biāo)系,
則,,,.
依題意知起始時(shí)刻儀器在儀器的“盲區(qū)”中.
假設(shè)儀器在儀器的“盲區(qū)”中的時(shí)長為,則,,
所以直線的斜率,
故直線的方程是,即,
從而點(diǎn)到直線的距離,
整理得,解得,結(jié)合時(shí)間,得.
答:儀器在儀器的“盲區(qū)”中的時(shí)長為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為a,線段B1D1上有兩個(gè)動點(diǎn)E,F,且EFa,以下結(jié)論正確的有( 。
A.AC⊥BE
B.點(diǎn)A到△BEF的距離為定值
C.三棱錐A﹣BEF的體積是正方體ABCD﹣A1B1C1D1體積的
D.異面直線AE,BF所成的角為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐PABC中,底面ABC,,,,D,E分別是AC,PC的中點(diǎn),F是PB上一點(diǎn),且,M為PA的中點(diǎn),二面角的大小為45°.
(1)證明:平面AEF;
(2)求直線AF與平面BCM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校對高一年級學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方圖如下:
(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);
(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在和的人中共抽取6人,再從這6人中選2人,求2人服務(wù)次數(shù)都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的離心率為,且過點(diǎn).
(1)求橢圓C的方程;
(2)過坐標(biāo)原點(diǎn)的直線與橢圓交于M,N兩點(diǎn),過點(diǎn)M作圓的一條切線,交橢圓于另一點(diǎn)P,連接,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孫子定理是中國古代求解一次同余式組的方法,是數(shù)論中一個(gè)重要定理,最早可見于中國南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》,年英國來華傳教士偉烈亞力將其問題的解法傳至歐洲,年英國數(shù)學(xué)家馬西森指出此法符合年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.這個(gè)定理講的是一個(gè)關(guān)于整除的問題,現(xiàn)有這樣一個(gè)整除問題:將至這個(gè)整數(shù)中能被除余且被除余的數(shù)按由小到大的順序排成一列構(gòu)成一數(shù)列,則此數(shù)列的項(xiàng)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.
(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);
(2)由直方圖可認(rèn)為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計(jì)有多少人?
(3)如果用抽取的考生成績的情況來估計(jì)全市考生的成績情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001)
附:①;
②,則;
③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,設(shè)集合是集合的非空子集,中的最大元素和最小元素之差稱為集合的直徑. 那么集合所有直徑為的子集的元素個(gè)數(shù)之和為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com