(1)已知A={y|y=x2+1,x∈R},B={y|y=x+1,x∈R},求A∩B;
(2)已知C={(x,y)|y=x2+1,x∈R},D={(x,y)|y=x+1,x∈R},求C∩D.
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:(1)求出A與B中y的范圍出A與B,找出兩集合的交集即可;
(2)聯(lián)立C與D中兩方程組成方程組,求出方程組的解即可確定出兩集合的交集.
解答: 解:(1)由A中y=x2+1≥1,得到A=[1,+∞);
由B中y=x+1,得到y(tǒng)∈R,即B=R,
則A∩B=[1,+∞);
(2)聯(lián)立得:
y=x2+1
y=x+1
,
解得:
x=0
y=1
x=1
y=2
,
則C∩D={(0,1),(1,2)}.
點(diǎn)評:此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種商品在最近30天內(nèi)的價(jià)格f(t)(元/件)與時(shí)間t(天)的函數(shù)關(guān)系是f(t)=t+10(0<t≤30,t∈N),銷售量g(t)(件)與時(shí)間t(天)的函數(shù)關(guān)系是g(t)=-t+35(0<t≤30,t∈N),那么,這種商品的日銷售金額的最大值是
 
元,此時(shí)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下說法錯(cuò)誤的是(  )
A、命題“若x2-3x+2=0,則x=1”的逆否命題是“若x≠1,則x2-3x+2≠0”
B、“x=1”是“x2-3x+2=0”的充分不必要條件
C、若p∧q為假命題,則p,q均為假命題
D、若命題p:?x0∈R,使得x02+x0+1<0,則﹁p:?x∈R,都有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A滿足{1,2}⊆A⊆{1,2,3,4},則集合A的個(gè)數(shù)為( 。
A、8B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+x-2<0},B={x|x>0},則集合A∩B等于(  )
A、{x|x>-2}
B、{x|0<x<1}
C、{x|x<1}
D、{x|-2<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2,g(x)=alnx(a∈R).
(1)設(shè)a>0,若不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)令h(x)=
1
2
xf(x)-3x2g′(x),若h(x)在(-2,2)內(nèi)的值域?yàn)殚]區(qū)間,求實(shí)數(shù)a的取值范圍;
(3)求證:
ln24
24
+
ln34
34
+…+
lnn4
n4
2
e
(其中e是自然對數(shù)的底數(shù),n≥2,n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從個(gè)體為6的總體中隨機(jī)抽取一個(gè)容量為3的樣本,則對于總體中指定的某個(gè)個(gè)體a,前兩次沒抽到,第三次恰好被抽到的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題:
①若0>a>b,則
1
a
1
b
;
②x>0,x+
1
x-1
的最小值為3;
③橢圓
x2
4
+
y2
3
=1比橢圓
x2
3
+
y2
2
=1更接近于圓;
④設(shè)A,B為平面內(nèi)兩個(gè)定點(diǎn),若有|PA|+|PB|=2,則動點(diǎn)P的軌跡是橢圓;
其中真命題的序號為
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an>0(n∈N*),它的前n項(xiàng)和Sn.如果{an}是一個(gè)首項(xiàng)為a,公比為q(q>0)的等比數(shù)列,且Gn=a12+a22+a32+…+an2(n∈N*),求
lim
n→∞
Sn
Gn

查看答案和解析>>

同步練習(xí)冊答案