已知等差數(shù)列{an}的前n項(xiàng)和為Sn,.若m>1,且am-1+am+1-=0,S2m-1=38,則m等于   
【答案】分析:根據(jù)等差數(shù)列的性質(zhì)可知,am-1+am+1=2am,代入am-1+am+1-=0中,即可求出am,然后利用等差數(shù)列的前n項(xiàng)和的公式表示出前2m-1項(xiàng)的和,利用等差數(shù)列的性質(zhì)化為關(guān)于第m項(xiàng)的關(guān)系式,把第m項(xiàng)的值代入即可求出m的值
解答:解:根據(jù)等差數(shù)列的性質(zhì)可得:am-1+am+1=2am,
∵am-1+am+1-=0,

∴am=0或am=2
若am=0,顯然S2m-1=(2m-1)am不成立
∴am=2
=(2m-1)am=38,
解得m=10.
故答案為:10
點(diǎn)評(píng):本題主要考查了等差數(shù)列前n項(xiàng)和公式與等差數(shù)列性質(zhì)的綜合應(yīng)用,熟練掌握公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案