已知P為橢圓
上一點,F
1、F
2是橢圓的兩個焦點,
,則△F
1PF
2的面積是
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知橢圓
的左焦點為F,左右頂點分別為A,C上頂點為B,過F,B,C三點作
,其中圓心P的坐標(biāo)為
.(1) 若FC是
的直徑,求橢圓的離心率;(2)若
的圓心在直線
上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)(注意:在試題卷上作答無效)
已知橢圓
的左、右焦點分別為
,若以
為圓心,
為半徑作圓
,過橢圓上一點
作此圓的切線,切點為
,且
的最小值不小于為
.
(1)求橢圓的離心率
的取值范圍;
(2)設(shè)橢圓的短半軸長為
,圓
與
軸的右交點為
,過點
作斜率為
的直線
與橢圓相交于
兩點,若
,求直線
被圓
截得的弦長
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的左、右焦點分別為F
1和F
2 ,以F
1、F
2為直徑的圓經(jīng)過點M(0,b).(1)求橢圓的方程;(2)設(shè)直線l與橢圓相交于A,B兩點,且
.求證:直線l在y軸上的截距為定值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知在△ABC中,B、C坐標(biāo)分別為B (0,-4),C (0,4),且
,頂點A
的軌跡方程是( )
(A)
(
x≠0) (B)
(
x≠0)
(C)
(
x≠0) (D)
(
x≠0)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
(a>b>0),點
在橢圓上。
(I)求橢圓的離心率。
(II)設(shè)A為橢圓的右頂點,O為坐標(biāo)原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。
【考點定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點間距離公式等基礎(chǔ)知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運算求解能力、綜合分析和解決問題的能力.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,線段AB的兩個端點A、B分別在x軸,y軸上滑動,
,點M是線段AB上一點,且
點M隨線段AB的滑動而運動.
(I)求動點M的軌跡E的方程
(II)過定點N
的直線
交曲線E于C、D兩點,交y軸于點P,若
的值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
為橢圓
的左、右焦點,
是坐標(biāo)原點,過
作垂直于
軸的直線
交橢圓于
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過左焦點
的直線
與橢圓
交于
、
兩點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
與雙曲線
有相同的焦點, 則m的值為( )
查看答案和解析>>