【題目】以下關于圓錐曲線的命題中:

①雙曲線與橢圓有相同焦點;

②以拋物線的焦點弦(過焦點的直線截拋物線所得的線段)為直徑的圓與拋物線的準線是相切的;

③設、為兩個定點,為常數(shù),若,則動點的軌跡為雙曲線;

④過拋物線的焦點作直線與拋物線相交于、,則使它們的橫坐標之和等于5的直線有且只有兩條;

以上命題正確的個數(shù)為(

A.1B.2C.3D.4

【答案】C

【解析】

①直接求解雙曲線與橢圓的焦點再判斷即可.

②利用焦半徑公式分析即可.

③舉出反例判定即可.

④設過焦點的直線方程聯(lián)立拋物線分析即可.

對①, 雙曲線的焦點為,橢圓的焦點為

.故①正確.

對②,不妨設以拋物線的焦點弦端點為.則以焦點弦為直徑的圓的圓心.又圓的直徑,圓心到準線的距離.故以拋物線的焦點弦為直徑的圓與拋物線的準線是相切的.同理對任意開口的拋物線均成立.故②正確.

對③,當時易得,的軌跡為線段的中垂線.

對④, 設過拋物線的焦點作直線,則.

則橫坐標之和.

故使它們的橫坐標之和等于5的直線有且只有兩條.

故①②④正確,③錯誤.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.

1)求直線和曲線的極坐標方程;

2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學家洛薩克拉茨在1950年世界數(shù)學家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復這樣的運算,經過有限步后,最終都能夠得到1.己知正整數(shù)經過6次運算后得到1,則的值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】揚州某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅固性及石塊用料等因素,設計其橫斷面要求面積為平方米,且高度不低于米.記防洪堤橫斷面的腰長為(米),外周長(梯形的上底線段與兩腰長的和)為(米).

關于的函數(shù)關系式,并指出其定義域;

要使防洪堤橫斷面的外周長不超過米,則其腰長應在什么范圍內?

當防洪堤的腰長為多少米時,堤的上面與兩側面的水泥用料最省(即斷面的外周長最。壳蟠藭r外周長的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從分別寫有數(shù)字1,2,3,4,5的5張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)字不大于第二張卡片的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在所有棱長都相等的三棱柱中,.

1)證明:;

2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了了解初三學生的體育鍛煉情況,隨機抽取了40名學生對一周的體育鍛煉時間長(單位:小時)進行統(tǒng)計,并將數(shù)據整理如下:

時間長

性別

1

2

3

6

8

0

2

10

6

2

1)采用樣本估計總體的方式,試估計該校的所有學生中一周的體育鍛煉時間長為的概率;

2)若將一周的體育鍛煉時間長不低于3小時的評定為體育鍛煉合格者,否則為不合格者,根據以上數(shù)據完成下面的列聯(lián)表,并據此判斷能否有95%的把握認為體育鍛煉與性別有關?附:,其中.

0.10

0.05

0.025

0.01

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面四個命題:其中所有正確命題的序號是_________

①函數(shù)的最小正周期為;

②在中,若,則一定是鈍角三角形;

③函數(shù)的圖象必經過點(32);

④若命題是假命題,則實數(shù)的取值范圍為;

的圖象向左平移個單位,所得圖象關于軸對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知六面體如圖所示,平面,,,,,分別是棱,上的點,且滿足.

(1)求證:平面平面;

(2)若平面與平面所成的二面角的大小為,求.

查看答案和解析>>

同步練習冊答案