如圖,在平面直角坐標(biāo)系xOy中,已知橢圓=1的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F.設(shè)過點(diǎn)T(t,m)的直線TA、TB與橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)設(shè)動點(diǎn)P滿足PF2-PB2=4,求點(diǎn)P的軌跡;
(2)設(shè)x1=2,x2,求點(diǎn)T的坐標(biāo);
(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān)).

(1)x=(2)(3)見解析

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,

已知橢圓E:的離心率為,過左焦點(diǎn)且斜率為的直線交
橢圓E于A,B兩點(diǎn),線段AB的中點(diǎn)為M,直線交橢圓E于C,D兩點(diǎn).
(1)求橢圓E的方程;
(2)求證:點(diǎn)M在直線上;
(3)是否存在實(shí)數(shù),使得四邊形AOBC為平行四邊形?若存在求出的值,若不存在說明理
由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦點(diǎn)在軸上,離心率為,對稱軸為坐標(biāo)軸,且經(jīng)過點(diǎn)
(1)求橢圓的方程;
(2)直線與橢圓相交于兩點(diǎn), 為原點(diǎn),在、上分別存在異于點(diǎn)的點(diǎn),使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓的中心在原點(diǎn)O,右焦點(diǎn)F在x軸上,橢圓與y軸交于A、B兩點(diǎn),其右準(zhǔn)線l與x軸交于T點(diǎn),直線BF交橢圓于C點(diǎn),P為橢圓上弧AC上的一點(diǎn).

(1)求證:A、C、T三點(diǎn)共線;
(2)如果=3,四邊形APCB的面積最大值為,求此時橢圓的方程和P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點(diǎn)與上頂點(diǎn),直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點(diǎn),若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點(diǎn),且·=0,試判斷直線l與圓C的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點(diǎn)F作直線l,使l⊥l1.又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個交點(diǎn)由上至下依次為A、B(如圖).

(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;
(2)當(dāng)=λ,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定橢圓C:=1(a>b>0),稱圓心在原點(diǎn)O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個焦點(diǎn)為F(,0),其短軸的一個端點(diǎn)到點(diǎn)F的距離為.
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B、D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求·的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點(diǎn),試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知過曲線上任意一點(diǎn)作直線的垂線,垂足為,且.
⑴求曲線的方程;
⑵設(shè)、是曲線上兩個不同點(diǎn),直線的傾斜角分別為,
當(dāng)變化且為定值時,證明直線恒過定點(diǎn),
并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,若,且.
(1)求動點(diǎn)的軌跡的方程;
(2)已知定點(diǎn),若斜率為的直線過點(diǎn)并與軌跡交于不同的兩點(diǎn),且對于軌跡上任意一點(diǎn),都存在,使得成立,試求出滿足條件的實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案