A. | sn=2n2+n | B. | an=-n2-3n+1 | C. | an=$\frac{1}{{2}^{n}}$ | D. | ${s_n}=-2{n^2}+n$ |
分析 利用二次函數(shù)、指數(shù)函數(shù)的單調(diào)性即可得出.
解答 解:A.Sn=2$(n+\frac{1}{4})^{2}$-$\frac{1}{8}$,因此n≥1時(shí),數(shù)列{an}為遞增數(shù)列.
B.a(chǎn)n=-$(n+\frac{3}{2})^{2}$+$\frac{13}{4}$,因此n≥1時(shí),數(shù)列{an}為遞減數(shù)列.
C.a(chǎn)n=$\frac{1}{{2}^{n}}$,因此n≥1時(shí),數(shù)列{an}為遞減數(shù)列.
D.Sn=$-2(n-\frac{1}{4})^{2}$+$\frac{1}{8}$因此n≥1時(shí),數(shù)列{an}為遞減數(shù)列.
故選:A.
點(diǎn)評(píng) 本題考查了二次函數(shù)、指數(shù)函數(shù)的單調(diào)性、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2)2>(-3)2 | B. | 0.20.3>0.20.1 | C. | 30.5<30.2 | D. | lg5<lg6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | ±$\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {k|0<k≤1} | B. | {k|k<0或k>1} | C. | {k|0≤k≤1} | D. | {k|k>1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -l-i | B. | -1+i | C. | 1+i | D. | l-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{ln2}{2}$ | D. | ln2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com