已知圓C:x2+y2-2x+4y+2=0,是否存在滿足以下兩個(gè)條件的直線l:
(1)斜率為1;
(2)直線被圓C截得的弦為AB,以AB為直徑的圓C1過(guò)原點(diǎn).若存在這樣的直線,請(qǐng)求出其方程;若不存在,說(shuō)明理由.
分析:設(shè)直線l存在,其方程為y=x+b,它與圓C的交點(diǎn)設(shè)為A(x1,y1)、B(x2,y2),由
x2+y2-2x+4y+2=0
y=x+b
,得2x2+2(b+1)x+b2+4b+2=0,由OA⊥OB,得x1x2+y1y2=0,由此利用韋達(dá)定理能推導(dǎo)出存在這樣的直線l,并能求出其方程.
解答:(本小題滿分15分)
解:設(shè)直線l存在,其方程為y=x+b,它與圓C的交點(diǎn)設(shè)為A(x1,y1)、B(x2,y2)(2分)
則由
x2+y2-2x+4y+2=0
y=x+b
,
得2x2+2(b+1)x+b2+4b+2=0(*)(4分)
x1+x2=-(b+1)
x1x2=
b2+4b+2
2
(6分)
∴y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2(8分)
由OA⊥OB得x1x2+y1y2=0,(10分)
2x1x2+b(x1+x2)+b2=0,(11分)
即b2+4b+2-b(b+1)+b2=0,b2+3b+2=0,
∴b=-1或b=-2(13分)
容易驗(yàn)證b=-1或b=-2時(shí)方程(*)有實(shí)根.(14分)
故存在這樣的直線l有兩條,其方程是y=x-1或y=x-2.(15分)
點(diǎn)評(píng):本題考查直線方程的求法,具體涉及到直線方程的性質(zhì)、圓的簡(jiǎn)單性質(zhì)、韋達(dá)定理等基本知識(shí)點(diǎn),解題時(shí)要認(rèn)真審題,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)一個(gè)圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長(zhǎng)為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點(diǎn)B.
(1)當(dāng)r=1時(shí),試用k表示點(diǎn)B的坐標(biāo);
(2)當(dāng)r=1時(shí),試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說(shuō)明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個(gè)有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實(shí)半軸長(zhǎng)a、虛半軸長(zhǎng)b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時(shí),是否能構(gòu)造“整勾股雙曲線”,它的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的長(zhǎng)恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請(qǐng)嘗試探索其構(gòu)造方法;若不能,試簡(jiǎn)述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
x
a
y
b
=1
與圓C有公共點(diǎn),且公共點(diǎn)都為整點(diǎn)(整點(diǎn)是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點(diǎn)),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案