求過直線與已知圓的交點(diǎn),且在兩坐標(biāo)軸上的四個(gè)截距之和為的圓的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
OQ |
OR |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓O:交軸于A,B兩點(diǎn),曲線C是以為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交直線X=-2于點(diǎn)Q.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓相切;
(Ⅲ)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省鹽城中學(xué)高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題
.已知圓以為圓心,為半徑,過點(diǎn)作直線與圓交于不同兩點(diǎn)
(Ⅰ)若求直線的方程;
(Ⅱ)當(dāng)直線的斜率為時(shí),過直線上一點(diǎn)作圓的切線為切點(diǎn)使求點(diǎn)的坐標(biāo);
(Ⅲ)設(shè)的中點(diǎn)為試在平面上找一點(diǎn),使的長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆河北省高一下學(xué)期二調(diào)考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知圓的方程為且與圓相切.
(1)求直線的方程;
(2)設(shè)圓與軸交于兩點(diǎn),M是圓上異于的任意一點(diǎn),過點(diǎn)且與軸垂直的直線為,直線交直線于點(diǎn)P’,直線交直線于點(diǎn)Q’
求證:以P’Q’為直徑的圓總過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省高二上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分) 已知圓的方程為,直線的方程為,點(diǎn)在直線上,過點(diǎn)作圓的切線,切點(diǎn)為.
(1)若,試求點(diǎn)的坐標(biāo);
(2)若點(diǎn)的坐標(biāo)為,過作直線與圓交于兩點(diǎn),當(dāng)時(shí),求直線的方程;ks.5u
(3)經(jīng)過三點(diǎn)的圓是否經(jīng)過異于點(diǎn)M的定點(diǎn),若經(jīng)過,請(qǐng)求出此定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com