分析 由圓心(2,0)在直線x+y-d=0上,可得2+0-d=0,解得d.直線y=$\frac{1}{2}$a1x+m與直線x+y-d=0垂直,可得-1×$\frac{1}{2}{a}_{1}$=-1,解得a1.再利用等差數列的求和公式與“裂項求和”方法即可得出.
解答 解:∵圓心(2,0)在直線x+y-d=0上,∴2+0-d=0,解得d=2.
直線y=$\frac{1}{2}$a1x+m與直線x+y-d=0垂直,
∴$\frac{1}{2}{a}_{1}$=1,解得a1=2.
∴Sn=2n+$\frac{n(n-1)}{2}×2$=n(n+1).
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴數列{$\frac{1}{{S}_{n}}$}的前項和=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
點評 本題考查了等差數列的求和公式與“裂項求和”方法、直線與圓的性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $[\frac{1}{3},\frac{{\sqrt{2}}}{2})$ | B. | $[\frac{{\sqrt{2}}}{3},\frac{{\sqrt{2}}}{2})$ | C. | $[\frac{{\sqrt{5}}}{6},\frac{{\sqrt{2}}}{2})$ | D. | $[\frac{{\sqrt{6}}}{7},\frac{{\sqrt{2}}}{2})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com