已知函數(shù)f(x)=a-
2
2x+1

(1)若f(x)為奇函數(shù),求實數(shù)a的值;
(2)判斷并證明f(x)的單調(diào)性.
(1)由奇函數(shù)的性質(zhì)f(x)+f(-x)=0,得a-
2
2x+1
+a-
2
2-x+1
=0
,解得a=1
(2)函數(shù)y=2x單調(diào)遞增,易判斷f(x)在定義域R上單調(diào)遞增,證明如下:
任取x1<x2∈R,f(x1)-f(x2)=a-
2
2x1+1
-(a-
2
2x2+1
)
=2•
2x1-2x2
(2x1+1)(2x2+1)
,∵x1<x2∈R
0<zx12x2
∴f(x1)-f(x2)<0
∴f(x)在定義域R上單調(diào)遞增
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=x2-2x
(1)求函數(shù)f(x)的解析式,并畫出函數(shù)f(x)的圖象.
(2)根據(jù)圖象寫出的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)y=f(2x+4)是偶函數(shù),則函數(shù)y=f(2x)的對稱軸是(    )
A.x="-2"B.x="2"C.x="-4"D.x=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若(m+1)x2-(m-1)x+3(m-1)<0對任意實數(shù)x恒成立,則實數(shù)m的取值范圍是( 。
A.m>1B.m<-1
C.m<-
13
11
D.m>1或m<-
13
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若命題:“任意x∈R,不等式ax2-x+1>0恒成立”為真命題,則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=aln(x+1)-x2,若在區(qū)間(0,1)內(nèi)任取兩個不同實數(shù)m,n,不等式
f(m+1)-f(n+1)
m-n
<1恒成立,則實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=
ax+3,(x≤1)
1
x
+1,(x>1)
,滿足對任意定義域中的x1,x2(x1≠x2),[f(x1)-f(x2)](x1-x2)<0總成立,則實數(shù)a的取值范圍是( 。
A.(-∞,0)B.[-1,0)C.(-1,0)D.(-1,+∞),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=
log2|x|
x
的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=x5+ax3+bx-8且f(-2)=-6,那么f(2)=(  )
A.0B.-10C.-18D.-26

查看答案和解析>>

同步練習(xí)冊答案