A. | 1:5 | B. | 1:2 | C. | 2:5 | D. | 1:3 |
分析 可延長PB到B′,延長PC到C′,并分別使PB′=2PB,PC′=3PC,從而根據(jù)條件便得到$\overrightarrow{PA}+\overrightarrow{PB′}+\overrightarrow{PC′}$=$\overrightarrow{0}$,這便說明P為△AB′C′的重心.這便得到三角形PAB′,三角形PB′C′,及三角形PC′A的面積都相等,設(shè)為S,從而會得到S△ABC=S,這樣便可求出△ABP與△ABC的面積之比.
解答 解:如圖,延長PB至PB',使PB'=2PB,延長PC至PC',使PC'=3PC,并連接AB′,B′C′,C′A,則:$\overrightarrow{PA}+\overrightarrow{PB′}+\overrightarrow{PC′}$=$\overrightarrow{0}$
∴P是△AB′C′的重心;
∴△PAB′,△PB′C′,△PC′A三個三角形的面積相等,記為S;
∴S△APB=$\frac{S}{2}$,S△APC=$\frac{S}{3}$,S△BPC=$\frac{S}{6}$,
∴S△ABC=S,
∴S△ABP:S△ABC=1:2.
故選B.
點評 考查向量數(shù)乘的幾何意義,三角形重心和三頂點構(gòu)成向量的和為零向量,以及三角形的面積公式.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{9}$ | B. | $\frac{5}{3}$ | C. | 5 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $-2\sqrt{3}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com