點(diǎn)Q在拋物線y2=4x上,點(diǎn)P(a,0)(滿足|PQ|≥|a|恒成立,則a的取值范圍是( 。
A、(0,2)B、[0,2]C、(-∞,2]D、(-∞,0)
分析:設(shè)出點(diǎn)的坐標(biāo),利用|PQ|≥|a|,可得t2+16-8a≥0,故t2≥8a-16恒成立,由此可求a的取值范圍.
解答:解:設(shè)Q(
t2
4
,t),
由|PQ|≥|a|得(
t2
4
-a)2+t2≥a2,
所以t2(t2+16-8a)≥0,
即t2+16-8a≥0,
故t2≥8a-16恒成立,
所以8a-16≤0,
所以a≤2,
故a的取值范圍是 (-∞,2].
故選C.
點(diǎn)評(píng):本題考查拋物線的運(yùn)用,考查分離參數(shù)方法的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C1:y2=4ax(a>0),橢圓C以原點(diǎn)為中心,以拋物線C1的焦點(diǎn)為右焦點(diǎn),且長(zhǎng)軸與短軸之比為
2
,過(guò)拋物線C1的焦點(diǎn)F作傾斜角為
π
4
的直線l,交橢圓C于一點(diǎn)P(點(diǎn)P在x軸上方),交拋物線C1于一點(diǎn)Q(點(diǎn)Q在x軸下方).
(1)求點(diǎn)P和Q的坐標(biāo);
(2)將點(diǎn)Q沿直線l向上移動(dòng)到點(diǎn)Q′,使|QQ′|=4a,求過(guò)P和Q′且中心在原點(diǎn),對(duì)稱軸是坐標(biāo)軸的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上兩定點(diǎn)C(-1,0),D(1,0)和一定直線l:x=-4,P為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,且(
PQ
+2
PC
)•(
PQ
-2
PC
)=0

(1)問(wèn)點(diǎn)P在什么曲線上,并求出曲線的軌跡方程M;
(2)又已知點(diǎn)A為拋物線y2=2px(p>0)上一點(diǎn),直線DA與曲線M的交點(diǎn)B不在y軸的右側(cè),且點(diǎn)B不在x軸上,并滿足
AB
=2
DA
,求p
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,F(xiàn)是拋物線x2=2py(p>0)的焦點(diǎn),點(diǎn)R(1,4)為拋物線內(nèi)一定點(diǎn),點(diǎn)Q為拋物線上一動(dòng)點(diǎn),|QR|+|QF|的最小值為5.
(1)求拋物線方程;
(2)已知過(guò)點(diǎn)P(0,-1)的直線l與拋物線x2=2py(p>0)相交于A(x1,y1)、B(x2,y2)兩點(diǎn),l1、l2分別是該拋物線在A、B兩點(diǎn)處的切線,M、N分別是l1、l2與直線y=-1的交點(diǎn).求直線l的斜率的取值范圍并證明|PM|=|PN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•武昌區(qū)模擬)已知數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,點(diǎn)A(an,
an+1
)
在拋物線y2=x+4上,則過(guò)點(diǎn)P(n,an)和Q(n+2,an+2)(n∈N*)的直線的一個(gè)方向向量的坐標(biāo)可以是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:022

已知定點(diǎn)A(3,2)在拋物線y2=2px(p>0)的內(nèi)部, F為拋物線的焦點(diǎn), 點(diǎn)Q在拋物線上移動(dòng), 當(dāng)│AQ│+│QF│取最小值4時(shí), p的值等于_________

查看答案和解析>>

同步練習(xí)冊(cè)答案