過(guò)橢圓的左焦點(diǎn)F的直線I交橢圓于點(diǎn)A、B,交其左準(zhǔn)線于點(diǎn)C,若,則此直線的斜率為( )
A.
B.
C.
D.±1
【答案】分析:先求出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,利用直角三角形相似求出點(diǎn)B到左準(zhǔn)線的距離為h,求出點(diǎn)B的橫坐標(biāo),再把點(diǎn)B的橫坐標(biāo)代入橢圓的方程求得B的縱坐標(biāo),得到點(diǎn)B的坐標(biāo),由斜率公式求出直線I的斜率.
解答:解:橢圓的左焦點(diǎn)F(-2,0),左準(zhǔn)線方程為 x=-,,且與 同向,
=3,設(shè)|FB|=k,則|BC|=3k,設(shè)點(diǎn)B到左準(zhǔn)線的距離為h,由三角形全等得 =,
=,h==xB+,∴xB=-,∴B(-,±),
由點(diǎn)B、點(diǎn)F的坐標(biāo),用兩點(diǎn)表示的斜率公式求出直線I的斜率為±,
故選B.
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),關(guān)鍵是求出點(diǎn)B的坐標(biāo),由點(diǎn) B、點(diǎn)F的坐標(biāo),利用兩點(diǎn)表示的斜率公式求出直線I的斜率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
9
+
y2
5
=1
的左焦點(diǎn)F的直線I交橢圓于點(diǎn)A、B,交其左準(zhǔn)線于點(diǎn)C,若
BC
=3
FB
,則此直線的斜率為( 。
A、±
3
3
B、±
3
C、±
2
2
D、±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2003•朝陽(yáng)區(qū)一模)已知:如圖,過(guò)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)F(-c,0)作垂直于長(zhǎng)軸A1A2的直線與橢圓c交于P、Q兩點(diǎn),l為左準(zhǔn)線.
(Ⅰ)求證:直線PA2、A1Q、l共點(diǎn);
(Ⅱ)若過(guò)橢圓c左焦點(diǎn)F(-c,0)的直線斜率為k,與橢圓c交于P、Q兩點(diǎn),直線PA2、A1Q、l是否共點(diǎn),若共點(diǎn)請(qǐng)證明,若不共點(diǎn)請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省高三下學(xué)期第二次考試數(shù)學(xué)(理) 題型:選擇題

過(guò)橢圓的左焦點(diǎn)F的直線交橢圓于點(diǎn)A、B,交其左準(zhǔn)線于點(diǎn)C,若,則此直線的斜率為(  )

    A、         B、      C、     D、 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省高三下學(xué)期第二次考試數(shù)學(xué)(文) 題型:選擇題

過(guò)橢圓的左焦點(diǎn)F的直線交橢圓于點(diǎn)A、B,交其左準(zhǔn)線于點(diǎn)C,

,則此直線的斜率為                     

A、         B、      C、     D、 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省高三下學(xué)期第二次考試數(shù)學(xué)(文) 題型:選擇題

過(guò)橢圓的左焦點(diǎn)F的直線交橢圓于點(diǎn)A、B,交其左準(zhǔn)線于點(diǎn)C,

,則此直線的斜率為                     

A、         B、      C、     D、 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案