已知⊙C:x2+y2=9中弦AB的長(zhǎng)為3
2
,則
AB
AC
=( 。
A、0
B、3
C、9
D、9
2
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用,直線與圓
分析:先求出∠CAB=45°,再利用向量的數(shù)量積公式,即可求出
AB
AC
解答: 解:∵⊙C:x2+y2=9中弦AB的長(zhǎng)為3
2

∴∠CAB=45°,
AB
AC
=3
2
×3×cos45°=9.
故選:C.
點(diǎn)評(píng):本題考查平面向量數(shù)量積的運(yùn)算,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>1,設(shè)函數(shù)f(x)=ax+x-4的零點(diǎn)為m,g(x)=logax+x-4的零點(diǎn)為n,則
1
m
+
1
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
4
x+1,x≤1
lnx,x>1
則方程f(x)=ax恰有兩個(gè)不同實(shí)數(shù)根時(shí),實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

半徑為R的球的內(nèi)接正三棱柱的三個(gè)側(cè)面積之和的最大值為( 。
A、3
3
R2
B、
3
R2
C、2
2
R2
D、
2
R2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中不正確的是(  )
A、對(duì)于線性回歸方程
y
=
b
x+
a
,直線必經(jīng)過(guò)點(diǎn)(
.
x
,
.
y
B、莖葉圖的優(yōu)點(diǎn)在于它可以保存原始數(shù)據(jù),并且可以隨時(shí)記錄
C、將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一常數(shù)后,方差恒不變
D、擲一枚均勻硬幣出現(xiàn)正面向上的概率是
1
2
,那么一枚硬幣投擲2次一定出現(xiàn)正面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2x
-cosx,若
π
3
<a<b<
6
,則( 。
A、f(a)>f(b)
B、f(a)<f(b)
C、f(a)=f(b)
D、f(a)f(b)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若原點(diǎn)O和點(diǎn)F(-3,0)分別是雙曲線
x2
a2
-y2
=1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則
OP
FP
的取值范圍為(  )
A、[8+6
2
,+∞)
B、[-3,+∞)
C、[-
1
8
,+∞)
D、[
1
8
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
的夾角為
π
4
,且|
a
|=4,(
1
2
a
+
b
)•(2
a
-3
b
)=12,則向量
b
在向量
a
方向上的投影是( 。
A、
2
B、4
C、4
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知OPQ是半徑為
7
、圓心角為
π
3
的扇形,C是扇形弧上的動(dòng)點(diǎn),ABCD是扇形的內(nèi)接矩形,記∠AOC=α.
(1)當(dāng)α=
π
6
時(shí),OA、OB的長(zhǎng);
(2)求
OA
OB
的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案