已知各項(xiàng)均為正數(shù)的無(wú)窮等比數(shù)列中,,則此數(shù)列的各項(xiàng)和           .

 

【答案】

【解析】解:因?yàn)楦黜?xiàng)均為正數(shù)的無(wú)窮等比數(shù)列

中,

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的兩個(gè)無(wú)窮數(shù)列{an}、{bn}滿足anbn+1+an+1bn=2nan+1(n∈N*).
(Ⅰ)當(dāng)數(shù)列{an}是常數(shù)列(各項(xiàng)都相等的數(shù)列),且b1=
1
2
時(shí),求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè){an}、{bn}都是公差不為0的等差數(shù)列,求證:數(shù)列{an}有無(wú)窮多個(gè),而數(shù)列{bn}惟一確定;
(Ⅲ)設(shè)an+1=
2an2+an
an+1
(n∈N*)
,Sn=
2n
i=1
bi
,求證:2<
Sn
n2
<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高三開(kāi)學(xué)檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的兩個(gè)無(wú)窮數(shù)列、滿足

(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項(xiàng)都相等的數(shù)列),且時(shí),求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè)都是公差不為0的等差數(shù)列,求證:數(shù)列有無(wú)窮多個(gè),而數(shù)列惟一確定;

(Ⅲ)設(shè),,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高三開(kāi)學(xué)檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的兩個(gè)無(wú)窮數(shù)列、滿足

(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項(xiàng)都相等的數(shù)列),且時(shí),求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè)、都是公差不為0的等差數(shù)列,求證:數(shù)列有無(wú)窮多個(gè),而數(shù)列惟一確定;

(Ⅲ)設(shè),求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省揚(yáng)州中學(xué)高三(上)開(kāi)學(xué)數(shù)學(xué)試卷(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的兩個(gè)無(wú)窮數(shù)列{an}、{bn}滿足anbn+1+an+1bn=2nan+1(n∈N*).
(Ⅰ)當(dāng)數(shù)列{an}是常數(shù)列(各項(xiàng)都相等的數(shù)列),且b1=時(shí),求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè){an}、{bn}都是公差不為0的等差數(shù)列,求證:數(shù)列{an}有無(wú)窮多個(gè),而數(shù)列{bn}惟一確定;
(Ⅲ)設(shè)an+1=,Sn=,求證:2<<6.

查看答案和解析>>

同步練習(xí)冊(cè)答案