如圖4,已知平面是圓柱的軸截面(經(jīng)過圓柱的軸的截面),BC是圓柱底面的直徑,O為底面圓心,E為母線的中點,已知
(I))求證:⊥平面
(II)求二面角的余弦值.
(Ⅲ)求三棱錐的體積.

(I))見解析(II)(Ⅲ)8

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某建筑物的上半部分是多面體, 下半部分是長方體(如圖). 該建筑物的正視圖和側視圖(如圖), 其中正(主)視圖由正方形和等腰梯形組合而成,側(左)視圖由長方形和等腰三角形組合而成.


(Ⅰ)求直線與平面所成角的正弦值;
(Ⅱ)求二面角的余弦值;
(Ⅲ)求該建筑物的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分).一個幾何體的三視圖如右圖所示(單位:),則該幾何體的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

用符號語言表示語句:“直線經(jīng)過平面內一定點,但外”,并畫出圖形。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.

(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA1平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點.
(1)證明:AE⊥PD‘
(2)若H為PD上的動點,EH與平面PAD所成最大角的正切值為求二面角E-AF-C的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題13分)在幾何體ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F(xiàn)是BC的中點,AB=AC=BE=2,CD=1. 
(1)求證:DC∥平面ABE;
(2)求證:AF⊥平面BCDE;
(3)求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在矩形ABCD中,AB=4,AD=2,E為AB的中點,現(xiàn)將△ADE沿直線DE翻折成△,使平面⊥平面BCDE,F(xiàn)為線段的中點. ks5u
(Ⅰ)求證:EF∥平面
(Ⅱ)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐P—ABCD的底面為矩形,PA=AD=1,PA⊥面ABCD,E是AB的中點,F(xiàn)為PC上一點,且EF//面PAD。

(I)證明:F為PC的中點;
(II)若二面角C—PD—E的平面角的余弦值為求直線ED與平面PCD所成的角

查看答案和解析>>

同步練習冊答案