4.x=1是函數(shù)f(x)=ex-m-ln(2x)的極值點(diǎn),則m的值為1.

分析 求出f′(x),由題意可知f'(1)=0,由此可求m,驗(yàn)證m的值,x=1是函數(shù)的極值點(diǎn).

解答 解:∵f(x)=ex-m-ln(2x),
∴f′(x)=ex-m-$\frac{1}{x}$,
由x=1是函數(shù)f(x)的極值點(diǎn)得f′(1)=0,
即e1-m-1=0,∴m=1.
于是f(x)=ex-1-ln(2x),f′(x)=ex-1-$\frac{1}{x}$,
由x>1知 f′(x)在x∈(0,+∞)上單調(diào)遞增,0<x<1且f′(1)<0,函數(shù)是減函數(shù),
∴x=1是f′(x)=0的唯一零點(diǎn).也是函數(shù)f(x)=ex-m-ln(2x)的極值點(diǎn).
故答案為:1.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的極值、單調(diào)性,考查學(xué)生靈活運(yùn)用知識(shí)分析解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x>1}\\{kx-2,x≤1}\end{array}\right.$是定義在R上的增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)是偶函數(shù),且x≥0時(shí),f(x)=3x,則f(-2)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓C1:x2+y2=$\frac{2}{5}$,直線l:y=x+m(m>0)與圓C1相切,且交橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)于A1,B1兩點(diǎn),c是橢圓C2的半焦距,c=$\sqrt{3}$b.
(1)求m的值;
(2)O為坐標(biāo)原點(diǎn),若$\overrightarrow{O{A}_{1}}$⊥$\overrightarrow{O{B}_{1}}$,求橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若一個(gè)n面體有m個(gè)面時(shí)直角三角形,則稱這個(gè)n面體的直度為$\frac{m}{n}$,則四面體A1-ABC的直度的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求由拋物線y=x2-2x+5與直線y=x+5所圍成的圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知△ABC中,a,b,c分別為角A,B,C的對應(yīng)邊,A=30°,B=45°,a=7,則邊長b為( 。
A.$\frac{7}{2}\sqrt{2}$B.$14\sqrt{2}$C.$7\sqrt{2}$D.$\frac{7}{3}\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)y=f(x)是定義在區(qū)間[-2,2]上的奇函數(shù),當(dāng)0≤x≤2時(shí)的圖象如圖所示,則y=f(x)的值域?yàn)閇-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,設(shè)A、B、C的對邊分別為a、b、c,
(1)若a=2且(2+b)•(sinA-sinB)=(c-b)sinC,求△ABC面積S的最大值
(2)△ABC為銳角三角形,且B=2C,若$\overrightarrow{m}$=(sinA,cosA),$\overrightarrow{n}$=(cosB,sinB),求|3$\overrightarrow{m}$-2$\overrightarrow{n}$|2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案