分析:(1)當(dāng)a=1時(shí),求出函數(shù)解析式,得到原函數(shù)的導(dǎo)函數(shù),求得f′(2)=1,然后利用直線方程的點(diǎn)斜式得答案;
(2)求出a=1時(shí)導(dǎo)函數(shù)的零點(diǎn),由零點(diǎn)對(duì)函數(shù)的定義域分段,求出得到區(qū)間,得到函數(shù)f(x)在x=1處取得極小值,根據(jù)函數(shù)f(x)在(0,+∞)只有唯一的極小值點(diǎn)求得極小值,把f(x)≥m
2-5m恒成立轉(zhuǎn)化為
f(x)min≥m2-5m,解不等式求得m的取值范圍;
(3)求出原函數(shù)的導(dǎo)函數(shù)
f′(x)=+a-=,令g(x)=ax
2+x-(a+1),然后對(duì)a進(jìn)行分類討論分析g(x)的符號(hào),從而得到f′(x)的符號(hào),進(jìn)一步得到函數(shù)f(x)的單調(diào)區(qū)間.
解答:
解:(1)當(dāng)a=1時(shí),
f(x)=lnx+x++3,x∈(0,+∞),
∴
f′(x)=+1-=,x∈(0,+∞),
∴f′(2)=1,
即曲線y=f(x)在點(diǎn)(2,f(2))處的切線的斜率為1,
又f(2)=6+ln2,
故曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為:x-y+ln2+4=0;
(2)當(dāng)a=1時(shí),∴
f′(x)=+1-=,x∈(0,+∞),
令f′(x)=0,得:x
2+x-2=0,解得:x
1=-2(舍),x
2=1.
當(dāng)x∈(0,1)時(shí),f′(x)<0,此時(shí)函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí),f′(x)>0,此時(shí)函數(shù)f(x)單調(diào)遞增.
因此函數(shù)f(x)在x=1處取得極小值,又因?yàn)楹瘮?shù)f(x)在(0,+∞)只有唯一的極小值點(diǎn).
故函數(shù)f(x)在x=1處取得最小值f(x)
min=f(1)=6.
f(x)≥m
2-5m恒成立?
f(x)min≥m2-5m,
即:m
2-5m≤6,解得:-1≤m≤6.
故所求m的取值范圍是:-1≤m≤6;
(3)∵
f′(x)=+a-=,x∈(0,+∞),
令g(x)=ax
2+x-(a+1),x∈(0,+∞),
當(dāng)a=0時(shí),g(x)=x-1,x∈(0,+∞),
此時(shí),當(dāng)x∈(0,1)時(shí),g(x)<0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí),g(x)>0,f′(x)>0,函數(shù)f(x)單調(diào)遞增.
當(dāng)a≠0時(shí),由f′(x)=0,即ax
2+x-(a+1)=0,解得:
x1=1,x2=--1.
①當(dāng)
a=-時(shí),x
1=x
2,g(x)≤0恒成立,
此時(shí)f′(x)≤0,函數(shù)f(x)在(0,+∞)遞減;
②當(dāng)
-<a<1時(shí),
--1>1>0,
此時(shí),當(dāng)x∈(0,1)時(shí),g(x)<0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)
x∈(1,--1)時(shí),g(x)>0,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
當(dāng)
x∈(--1,+∞)時(shí),g(x)<0,f′(x)<0,函數(shù)f(x)單調(diào)遞減.
當(dāng)a>0時(shí),
--1<0,
此時(shí):當(dāng)x∈(0,1)時(shí),g(x)<0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí),g(x)>0,f′(x)>0,函數(shù)f(x)單調(diào)遞增.
綜上所述:
當(dāng)a≥0時(shí),函數(shù)f(x)在(0,1)上單調(diào)遞減,
函數(shù)f(x)在(1,+∞)上單調(diào)遞增;
當(dāng)a=-
時(shí),函數(shù)f(x)在(0,+∞)單調(diào)遞減;
當(dāng)
-<a<0時(shí),函數(shù)f(x)在(0,1)上單調(diào)遞減,
函數(shù)f(x)在
(1,--1)上單調(diào)遞增,
函數(shù)f(x)在
(--1,+∞)上單調(diào)遞減.