若函數(shù)f(x)=ax5+bx3+cx+3,若f(2)=5,則f(-2)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)已知,f(x)=ax5+bx3+cx+2,f(2)=5,不能求得a,b,c.注意到-2與2互為相反數(shù)關(guān)系,可以聯(lián)想、借用函數(shù)的奇偶性,整體求解.
解答: 解:∵f(x)=ax5+bx3+cx+3,
∴f(-x)=a(-x)5+b(-x)3+c(-x)+3
=-ax5-bx3-cx+3,
∴f(x)+f(-x)=6,移向得,f(-x)=6-f(x),
∴f(-2)=4-f(2)=6-5=1.
故答案為:1.
點(diǎn)評:本題考查函數(shù)值的計(jì)算,函數(shù)的奇偶性判斷與應(yīng)用.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,a+b=1,則下列結(jié)論正確的有
 

b
a
+
a
b
>2;
②ab的最大值為
1
4
;
③a2+b2的最小值為
1
2
;
1
a
+
4
b
的最大值為9;
⑤a(2b-1)的最大值為
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x的周期為=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
x2
100
+
y2
64
=1的兩個焦點(diǎn),P是橢圓上任意一點(diǎn).
(1)求PF1•PF2的最大值.
(2)若∠F1PF2=
π
3
,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某汽車運(yùn)輸公司每輛客車營運(yùn)的總利潤y(萬元)與營運(yùn)年數(shù)x的關(guān)系y=-(x-6)2+11(x∈N*),則每輛客車營運(yùn)( 。┠辏昶骄麧欁畲螅
A、5B、10C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行如圖程序框圖(判斷條件k≤20?),那么輸出的S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:102-lg
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosA=
1
3

(1)求sin(B+C)的值;
(2)若a=2,S△ABC=
2
,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個關(guān)系式中,其中表示正確的序號是
 

(1)a∉{a,b,c};          
(2)∅∈{0};
(3)7∈{x|x=3k-1,k∈Z};   
(4){x|x是菱形}?{x|x是平行四邊形}.

查看答案和解析>>

同步練習(xí)冊答案