已知函數(shù)
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的最大值和最小值.

:(1);(2).

解析試題分析:(1)先利用和差化積公式以及二倍角公式,將原式化為,再利用積化和差公式將此式變形化簡(jiǎn)得到:,再根據(jù)公式:,求出所給函數(shù)的周期;(2)根據(jù)已知條件,求出,再依據(jù)函數(shù),在上的單調(diào)性得到:函數(shù)時(shí)取得最大值,在時(shí)取得最小值,并分別求出最大值和最小值以及對(duì)應(yīng)的的值.
試題解析:(1)

               5分
所以的最小正周期為.                7分
(2)由(1)知,
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/17/a/1ywfm2.png" style="vertical-align:middle;" />,所以.
當(dāng),即時(shí),函數(shù)取最大值;
當(dāng),即時(shí),函數(shù)取最小值.
所以,函數(shù)在區(qū)間上的最大值為,最小值為.       13分
考點(diǎn):1.和差化積公式;2.三角函數(shù)的周期;3.三角函數(shù)的單調(diào)性;4.三角函數(shù)的最值;5.二倍角公式

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(1)求函數(shù)的值域;
(2)若函數(shù)的最小正周期為,則當(dāng)時(shí),求的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知其最小值為.
(1)求的表達(dá)式;
(2)當(dāng)時(shí),要使關(guān)于的方程有一個(gè)實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)求的最小正周期和值域;
(2)在銳角△中,角的對(duì)邊分別為,若,,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,且,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的定義域和最小正周期;
(2)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求的定義域及最小正周期;
(2)求單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的周期及單調(diào)遞增區(qū)間;
(2)在中,三內(nèi)角,,的對(duì)邊分別為,已知函數(shù)的圖象經(jīng)過(guò)點(diǎn)成等差數(shù)列,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知cos α=,cos(α+β)=-,且α、β∈,求cos(α-β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案