已知函數(shù)f(x)的定義域為D,如果存在實數(shù)M,使對任意的x∈D,都有|f(x)|≤M,則稱函數(shù)f(x)為有界函數(shù),下列函數(shù):
①f(x)=2-|x|,x∈R                          ②f(x)=ln|x|,x∈(0,+∞)
③f(x)=
x
x2+1
,x∈(-∞,0)∪(0,+∞)    ④f(x)=xsinx,x∈(0,+∞)
為有界函數(shù)的是( 。
A、②④B、②③④
C、①③D、①③④
考點:函數(shù)的最值及其幾何意義
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,首先理解有界函數(shù)的定義,再對4個函數(shù)依次判斷即可.
解答: 解:①|(zhì)f(x)|=2-|x|≤20=1,故是有界函數(shù);
②當(dāng)x→0時,|f(x)|=|lnx|→+∞,x∈(0,+∞),故不是有界函數(shù);
③|f(x)|=|
x
x2+1
|=
1
|x|+
1
|x|
1
2
,x∈(-∞,0)∪(0,+∞),故是有界函數(shù);
 ④當(dāng)x=2kπ+
π
2
,k∈Z時,f(x)=2kπ+
π
2
,當(dāng)k→+∞時,2kπ+
π
2
→+∞,故不是有界函數(shù);
故選C.
點評:本題考查了學(xué)生對新定義的接受能力及應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:x2-x≥6,q:2x>1,已知“p∧q”與“¬q”同時為假命題.
(1)分別判斷p和q的真假;
(2)求滿足條件的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點在原點,始邊與x軸的正半軸重合,終邊落在第三象限,與圓心在原點的單位圓交于點P(cosα,-
3
3
),則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足,a1=1,且
1
an+1
-
1
an
=2
(Ⅰ)求an的通項公式;
(Ⅱ)設(shè){anan+1}的前n項和為Tn,若Tn=
49
99
,試求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>y>0,是
1
x
1
y
的( 。
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)為定義域D上單調(diào)函數(shù),且存在區(qū)間[a,b]⊆D(其中a<b),使得當(dāng)x∈[a,b]時,f(x)的取值范圍恰為[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]叫做等域區(qū)間.
(1)函數(shù)h(x)=x2(x≤0)是否是正函數(shù)?若是,求h(x)的等域區(qū)間,若不是,請說明理由;
(2)已知f(x)=x
1
2
是[0,+∞)上的正函數(shù),求f(x)的等域區(qū)間;
(3)試探究是否存在實數(shù)m,使得函數(shù)g(x)=x2+m是(-∞,0)上的正函數(shù)?若存在,請求出實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是周期為4的奇函數(shù),f(3)=2,則f(9)=(  )
A、6B、-6C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某三棱錐的三視圖均為腰長為 2的等腰直角三角形(如圖),則該棱錐的表面積為( 。
A、6+2
3
B、6+4
3
C、12+4
3
D、8+4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|mx2-mx+1=0}只有一個真子集,則實數(shù)m的值為( 。
A、0B、4C、0或4D、0或-4

查看答案和解析>>

同步練習(xí)冊答案