用反證法證明命題“若實(shí)系數(shù)一元二次方程有有理根,那么中至少有一個(gè)是偶數(shù)”時(shí),下列假設(shè)正確的是( )
A.假設(shè)都是偶數(shù) | B.假設(shè)都不是偶數(shù) |
C.假設(shè)至多有一個(gè)是偶數(shù) | D.假設(shè)至少有兩個(gè)是偶數(shù) |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
用演繹法證明函數(shù)是增函數(shù)時(shí)的小前提是
A.增函數(shù)的定義 |
B.函數(shù)滿(mǎn)足增函數(shù)的定義 |
C.若,則 |
D.若,則 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,第n個(gè)圖形是由正n+2邊形“擴(kuò)展”而來(lái),(n=1、2、3、…),
則在第n個(gè)圖形中共有( )個(gè)頂點(diǎn)。
A.(n+1)(n+2) | B.(n+2)(n+3) | C.+3n+8 | D.12n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
菱形的對(duì)角線相等,正方形是菱形,所以正方形的對(duì)角線相等。在以上三段論的推理中( )
A.大前提錯(cuò)誤 | B.小前提錯(cuò)誤 | C.推理形式錯(cuò)誤 | D.結(jié)論錯(cuò)誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
用演繹法證明函數(shù)是增函數(shù)時(shí)的小前提是( )
A.增函數(shù)的定義 | B.函數(shù)滿(mǎn)足增函數(shù)的定義 |
C.若,則 | D.若,則 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
用反證法證明命題“三角形的內(nèi)角中至少有一個(gè)角不大于”時(shí),反設(shè)正確的是
A.假設(shè)三個(gè)內(nèi)角都不大于 | B.假設(shè)三個(gè)內(nèi)角都大于 |
C.假設(shè)三個(gè)內(nèi)角至多有一個(gè)大于 | D.假設(shè)三個(gè)內(nèi)角至多有二個(gè)大于 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3,(n∈N+)能被9整除”,要利
用歸納法假設(shè)證n=k+1時(shí)的情況,只需展開(kāi)( ).
A.(k+3)3 | B.(k+2)3 |
C.(k+1)3 | D.(k+1)3+(k+2)3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
觀察下列事實(shí):|x|+|y|=1的不同整數(shù)解(x,y)的個(gè)數(shù)為4,|x|+|y|=2的不同整數(shù)解(x,y)的個(gè)數(shù)為8,|x|+|y|=3的不同整數(shù)解(x,y)的個(gè)數(shù)為12,…,則|x|+|y|=20的不同整數(shù)解(x,y)的個(gè)數(shù)為( )
A.76 | B.80 |
C.86 | D.92 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,模塊①~⑤均由4個(gè)棱長(zhǎng)為1的小正方體構(gòu)成,模塊⑥由15個(gè)棱長(zhǎng)為1的小正方體構(gòu)成.現(xiàn)從模塊①~⑤中選出三個(gè)放到模塊⑥上,使得模塊⑥成為一個(gè)棱長(zhǎng)為3的大正方體,則下列選擇方案中,能夠完成任務(wù)的為( )
A.模塊①,②,⑤ | B.模塊①,③,⑤ |
C.模塊②,④,⑤ | D.模塊③,④,⑤ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com