已知數(shù)列{an}的相鄰兩項an,an+1是關(guān)于x的方程x2-2nx+anan+1=0 (n∈N*)的兩實根,且a1=1,記數(shù)列{an}的前n項和為Sn
(1)求a2,a3;
(2)求證:數(shù)列{an-
1
3
×2n}
是等比數(shù)列;
(3)設(shè)bn=anan+1,問是否存在常數(shù)λ,使得bn>λSn對?n∈N*都成立,若存在,求出λ的取值范圍,若不存在,請說明理由.
考點:等比數(shù)列的性質(zhì),數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:(1)由韋達定理可得an+an+1=2n,由a1=1可求得a2=1,a3=3;
(2)由等比數(shù)列的定義可知
an+1-
1
3
×2n+1
an-
1
3
×2n
為常數(shù)-1,可得結(jié)論;
(3)由(2)得an的通項公式,問題轉(zhuǎn)化為對?n∈N*
1
9
[22n+1-(-2)n-1]-
λ
3
[2n+1-2-
(-1)n-1
2
]>0,(n∈N*)
都成立,分n為奇數(shù)和偶數(shù)分類討論可得.
解答: 解:(1)∵an,an+1是關(guān)于x的方程x2-2nx+anan+1=0 (n∈N*)的兩實根,
an+an+1=2n,又∵a1=1,∴a2=1,a3=3;
(2)∵
an+1-
1
3
×2n+1
an-
1
3
×2n
=
2n-an-
1
3
×2n+1
an-
1
3
×2n
=
-(an-
1
3
×2n)
an-
1
3
×2n
=-1

∴數(shù)列{an-
1
3
×2n}
是首項為a1-
2
3
=
1
3
,公比為-1的等比數(shù)列;
(3)由(2)得an-
1
3
×2n=
1
3
×(-1)n-1
,an=
1
3
[2n-(-1)n]
,
Sn=a1+a2+…+an=
1
3
(2+22+23+…+2n)-
1
3
[(-1)+(-1)2+…+(-1)n]
=
1
3
[2n+1-2-
(-1)n-1
2
]

bn=anan+1=
1
9
[2n-(-1)n]×[2n+1-(-1)n+1]=
1
9
[22n+1-(-2
)
n
 
-1]

要使bn>λSn,對?n∈N*都成立,
1
9
[22n+1-(-2)n-1]-
λ
3
[2n+1-2-
(-1)n-1
2
]>0,(n∈N*)
(*),
①當n為正奇數(shù)時,由(*)式得:
1
9
[22n+1+2n-1]-
λ
3
(2n+1-1)>0
,
1
9
(2n+1-1)(2n+1)-
λ
3
(2n+1-1)>0
,∵2n+1-1>0,∴λ<
1
3
(2n+1)
對任意正奇數(shù)n都成立,
1
3
(2n+1)(n
為正奇數(shù))的最小值為1.∴λ<1;
②當n為正偶數(shù)時,由(*)式得:
1
9
(22n+1-2n-1]-
λ
3
(2n+1-2)>0

1
9
(22n+1+1)(2n-1)-
3
(2n-1)>0
,∵2n-1>0,∴λ<
1
6
(2n+1+1)
對任意正偶數(shù)n都成立,
1
6
(2n+1+1)(n
為正偶數(shù))的最小值為
3
2
.∴λ<
3
2

綜上所述得,存在常數(shù)λ,使得bn>λSn對?n∈N*都成立,λ的取值范圍為(-∞,1)
點評:本題考查等比數(shù)列的性質(zhì),涉及等比數(shù)列的判斷和分類討論以及恒成立問題,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

為了解高一年級學生身高情況,某校按10%的比例對全校700名高一學生按性別進行抽樣檢查,測得身高頻數(shù)分布表如下:
表1:男生身高頻數(shù)分布表
身高(cm)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
頻數(shù)25141342
表2:女生身高頻數(shù)分布表
身高(cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)
頻數(shù)1712631
(1)求該校高一男生的人數(shù);
(2)估計該校高一學生身高(單位:cm)在[165,180)的概率;
(3)在男生校本中,從身高(單位:cm)在[180,190)的男生中任選3人,設(shè)ξ表示所選3人中身高(單位:cm)在[180,185)的人數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(ax-
1
x
8的展開式中x2的系數(shù)為70,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定點A(0,1),B(0,-1),C(1,0).動點P滿足
AP
BP
=k|
PC
|2.(其中k為常數(shù))求動點P的軌跡方程,并說明方程表示的曲線類型.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個正整數(shù)數(shù)表如(表中下一行中的數(shù)的個數(shù)比上一行中數(shù)的個數(shù)多一個),則第7行中的第2個數(shù)是( 。
第1行1
第2行2   3
第3行4   5   6  
A、24B、23C、22D、21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-e-x,其中e是自然對數(shù)的底數(shù).
(Ⅰ)證明:f(x)是R上的奇函數(shù);
(Ⅱ)若關(guān)于x的不等式mf(x)≤e-x-m-1在(0,+∞)上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足a1=1,a2=2,且an=
an-1
an-2
(n≥3),則a2010為( 。
A、1
B、2
C、
1
2
D、22010

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=
1
3
x3+
4
3
在點(2,4)處的切線方程是( 。
A、x+4y-4=0
B、x-4y-4=0
C、4x+y-4=0
D、4x-y-4=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,若
AB2
+
AC2
=
AB
AC
+
BA
BC
+
CA
CB
,則角A的度數(shù)是
 

查看答案和解析>>

同步練習冊答案