考點:三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:(1)化簡函數(shù)的解析式為y=1-
,根據(jù)正弦函數(shù)的值域求得
的范圍,可得函數(shù)y的值域.
(2)由條件利用余弦函數(shù)的定義域和值域球的函數(shù)的值域.
(3)根據(jù)正弦函數(shù)的定義域和值域求得sinx+3的范圍,再根據(jù)對數(shù)函數(shù)的單調性求得函數(shù)的值域.
解答:
解:(1)∵y=
=
=1-
,∵2≤sinx+3≤4,∴
∈[
,3],
∴y∈[-2,-
],故函數(shù)的值域為[-2,-
].
(2)對于函數(shù)y=cos(x+
),當x∈[0,
],x+
∈[
,
],∴y=cos(x+
)∈[-
,
],
即函數(shù)的值域為[-
,
].
(3)對于y=log
(sinx+3),由于sinx+3∈[2,4],∴l(xiāng)og
(sinx+3)∈[log
4,log
2],
故函數(shù)的值域為[log
4,log
2].
點評:本題主要考查正弦函數(shù)、余弦函數(shù)的定義域和值域,不等式的基本性質,對數(shù)函數(shù)的單調性,屬于中檔題.