已知動點P與雙曲線x2y2=1的兩個焦點F1F2的距離之和為定值,

(1)求動點P的軌跡方程;

(2)設M(0,-1),若斜率為k(k≠0)的直線lP點的軌跡交于不同的兩點A、B,若要使|MA|=|MB|,試求k的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知動點P的軌跡方程為:
x2
4
-
y2
5
=1(x>2),O是坐標原點.
①若直線x-my-3=0截動點P的軌跡所得弦長為5,求實數(shù)m的值;
②設過P的軌跡上的點P的直線與該雙曲線的兩漸近線分別交于點P1、P2,且點P分有向線段
P1P2
所成的比為λ(λ>0),當λ∈[
3
4
,
3
2
]時,求|
OP1
|•|
OP2
|的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標高二版(A選修1-1) 2009-2010學年 第18期 總第174期 人教課標版(A選修1-1) 題型:044

已知雙曲線C以y=0為漸近線,且過點A(3,2).

(1)求雙曲線C的標準方程;

(2)已知動點P與雙曲線C的兩個焦點所連線段長的和為6,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標版高二(A選修2-1) 2009-2010學年 第18期 總第174期 人教課標版(A選修2-1) 題型:044

已知雙曲線C以y=0為漸近線,且過點A(3,2).

(1)求雙曲線C的標準方程;

(2)已知動點P與雙曲線C的兩個焦點所連線段長的和為6,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P(a,b)(b≠0)是平面直角坐標系xOy中的點,l是經(jīng)過原點與點(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點的交點

⑴.已知a=1,b=2,p=2,求點Q的坐標。

⑵.已知點P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點Q落在雙曲線4x2-4y2=1上。

⑶.已知動點P(a,b)滿足ab≠0,p=,若點Q始終落在一條關于x軸對稱的拋物線上,試問動點P的軌跡落在哪種二次曲線上,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(上海卷理20)設P(a,b)(b≠0)是平面直角坐標系xOy中的點,l是經(jīng)過原點與點(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點的交點

⑴已知a=1,b=2,p=2,求點Q的坐標.

⑵已知點P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點Q落在雙曲線4x2-4y2=1上.

⑶已知動點P(a,b)滿足ab≠0,p=,若點Q始終落在一條關于x軸對稱的拋物線上,試問動點P的軌跡落在哪種二次曲線上,并說明理由.

查看答案和解析>>

同步練習冊答案