已知曲線C:
x=2cosθ
y=3+2sinθ
(θ∈R)
,一動(dòng)直線l過A(-1,0)與曲線C相交于P,Q兩點(diǎn),M為P,Q中點(diǎn),l與直線x+3y+6=0相交于N,則|AM|•|AN|=
5
5
分析:設(shè)連接CA并延長(zhǎng)交直線x+3y+6=0相交于G,可得CG⊥NG,由垂徑定理得CM⊥PQ,可得△AGN∽△AMC,將比例線段轉(zhuǎn)化為等積式,得|AM|•|AN|=|AC|•|AG|=5.
解答:解:把曲線C:
x=2cosθ
y=3+2sinθ
(θ∈R)
 消去參數(shù)θ化為普通方程為 x2+(y-3)2=4.  
設(shè)連接CA并延長(zhǎng)交直線x+3y+6=0相交于G,連接CM可得AC的斜率為kAC=
3-0
0+1
=3.
∵直線x+3y+6=0的斜率為K1=-
1
3
,kAC•k1=3×(-
1
3
)=-1,

∴直線AC與直線x+3y+6=0垂直.

又∵圓C中,M為弦PQ的中點(diǎn),∴CM⊥PQ,

因此△AGN∽△AMC,可得
AC
AN
=
AM
AG
,∴|AM|•|AN|=|AC|•|AG|.
又∵|AC|=
(-1-0)2+(3-0)2
=
10
,AG=
|-1+3×0+6|
10
=
10
2
,
∴|AC|•|AG|=
10
×
10
2
=5,
故答案為 5.
點(diǎn)評(píng):本題考查了直線與圓相交的性質(zhì),屬于中檔題,利用垂徑定理得到三角形相似是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題(請(qǐng)考生在以下三個(gè)小題中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
(1)已知曲線C的參數(shù)方程為
x=1+2t
y=at2
(t為參數(shù),a∈R),點(diǎn)M(5,4)在曲線C 上,則曲線C的普通方程為
 

(2)已知不等式x+|x-2c|>1的解集為R,則正實(shí)數(shù)c的取值范圍是
 

(3)如圖,PC切圓O于點(diǎn)C,割線PAB經(jīng)過圓心A,PC=4,PB=8,則S△OBC
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x2+y2=4(x≥0,y≥0),與拋物線x2=y及y2=x的圖象分別交于點(diǎn)A(x1,y1),B(x2,y2),則
y
2
1
+
y
2
2
的值等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=
9-x2
,與直線l:y=x+b沒有公共點(diǎn),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面的對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②若對(duì)任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
上述命題中錯(cuò)誤的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程為ρ=2sinθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的非負(fù)半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
2
2
t-2
y=
2
2
t
(t為參數(shù)),則直線l與曲線C相交所得的弦的弦長(zhǎng)為(  )
A、
2
B、2
C、4
D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案