精英家教網 > 高中數學 > 題目詳情
已知曲線C的極坐標方程為ρ=2sinθ,以極點為平面直角坐標系的原點,極軸為x軸的非負半軸,建立平面直角坐標系,直線l的參數方程為
x=
2
2
t-2
y=
2
2
t
(t為參數),則直線l與曲線C相交所得的弦的弦長為( 。
A、
2
B、2
C、4
D、1
分析:把極坐標方程、參數方程化為直角坐標方程,求出圓的半徑和圓心,再求出圓心C到直線l的距離d,利用弦長公式求得弦長.
解答:解:曲線C的極坐標方程為ρ=2sinθ,化為直角坐標方程為 x2+(y-1)2=1,
∴圓心C(0,1),半徑R=1.把直線l的參數方程化為直角坐標方程為 x-y+2=0.
∵圓心C到直線l的距離d=
|0-1+2|
2
=
2
2
,
∴直線l與曲線C相交所得的弦的弦長為 2
R2-d2
=2
1-
1
2
=
2
,
故選A.
點評:本題考查把極坐標方程、參數方程化為直角坐標方程的方法,點到直線的距離公式、弦長公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

平面直角坐標系中,直線l的參數方程是
x=t
y=
3
t
(t為參數),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.
(1)求直線l的極坐標方程;
(2)若直線l與曲線C相交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知曲線C的極坐標方程為ρ=6cosθ,把曲線C的極坐標方程轉化為直角坐標方程為
x2+y2=6x
x2+y2=6x

查看答案和解析>>

科目:高中數學 來源: 題型:

(選修4-4:坐標系與參數方程)已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數方程為
x=t
y=
3
t+1
(t為參數),求直線l被曲線C截得的線段長.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃州區(qū)模擬)(考生注意:本題為選做題,請在下列兩題中任選一題作答,如果都做,則按所做第(1)題計分)
(1)(《坐標系與參數方程選講》選做題).已知曲線C的極坐標方程為ρ=2cosθ,則曲線C上的點到直線
x=-1+t
y=2t
(t為參數)距離的最大值為
1+
4
5
5
1+
4
5
5


(2)(《幾何證明選講》選做題).已知點C在圓O的直徑BE的延長線上,直線CA與圓O相切于點A,∠ACB的平分線分別交AB,AE于點D,F,則∠ADF
45°
45°

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-4  坐標系與參數方程
已知曲線C的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0
,
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設(x,y)是曲線C上任意一點,求
y
x
的最大、最小值.

查看答案和解析>>

同步練習冊答案