已知定義在R上的函數(shù)y=f(x) 對于任意的x都滿足f(x+1) =-f(x), 當(dāng)
-1≤x< 1時, , 若函數(shù)至少有6個零點(diǎn), 則a的取值范圍是( )
A.∪(5, +∞) B.∪[5, +∞) C. ∪(5,7) D.∪[5,7)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
某房屋開發(fā)公司用100萬元購得一塊土地,該地可以建造每層1000m2的樓房,樓房的總建筑面積(即各層面積之和)每平方米平均建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整幢樓房每平方米建筑費(fèi)用增加20元。已知建筑5層樓房時,每平方米建筑費(fèi)用為400元,公司打算造一幢高于5層的樓房,為了使該樓房每平方米的平均綜合費(fèi)用最低(綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和),公司應(yīng)把樓層建成幾層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知等差數(shù)列的公差為2,前項(xiàng)和為,且,,成等比數(shù)列。
(I)求數(shù)列的通項(xiàng)公式;
(II)令=求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x) =elnx, g(x) =lnx-x-1, h(x) =x2.
(1) 求函數(shù)g(x) 的極大值;
(2) 求證: 存在x0∈(1, +∞), 使g(x0) =g;
(3) 對于函數(shù)f(x) 與h(x) 定義域內(nèi)的任意實(shí)數(shù)x, 若存在常數(shù)k, b, 使得f(x) ≤k x+b和h(x) ≥k x+b都成立, 則稱直線y=k x+b為函數(shù)f(x) 與h(x) 的分界線. 試探究函數(shù)f(x) 與h(x) 是否存在“分界線”? 若存在, 請給予證明, 并求出k, b的值; 若不存在, 請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com