【題目】如圖,在三棱柱中,底面ABC,是邊長為2的正三角形,,E,F分別為BC,的中點.
1求證:平面平面;
2求三棱錐的體積;
3在線段上是否存在一點M,使直線MF與平面沒有公共點?若存在,求的值;若不存在,請說明理由.
【答案】(1)見解析;(2);(3)見解析
【解析】
1推導出,,由,得,從而平面,由此能證明平面平面C.
2由,能求出三棱錐的體積.
3取中點M,連結(jié)MF,推導出,由此能求出線段上是否存在中點M,使直線MF與平面沒有公共點,此時.
證明:1在三棱柱中,
因為為等邊三角形,E為BC中點,
所以
又平面ABC,平面ABC,所以.
因為,所以
因為,平面,平面,
所以平面C.
所以平面平面C.
2,
取的中點D,連結(jié)DE,則,,
所以平面,
又F是的中點,所以,
所以
,
即三棱錐的體積為
3在線段上存在一點M,滿足題意.
理由如下:
取中點M,連結(jié)
因為F是的中點,所以MF是的中位線,
所以E.
因為平面,平面,
所以平面,
即直線MF與平面沒有公共點
此時
科目:高中數(shù)學 來源: 題型:
【題目】已知是曲線上的點,是數(shù)列前項和,且滿足
(1)若時,求的值;
(2)證明:數(shù)列是常數(shù)列;
(3)確定的取值集合M,使時,數(shù)列是單調(diào)遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線(為參數(shù),實數(shù)),曲線(為參數(shù),實數(shù)).在以為極點,軸的正半軸為極軸的極坐標系中,射線與交于,兩點,與交于,兩點.當時,;當,.
(1)求和的值.
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班主任對全班50名學生的學習積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
分類 | 積極參加 班級工作 | 不太主動參 加班級工作 | 總計 |
學習積極性高 | 18 | 7 | 25 |
學習積極性一般 | 6 | 19 | 25 |
總計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態(tài)度是否有關,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,當P(x,y)不是原點時,定義P的“伴隨點”為;
當P是原點時,定義P的“伴隨點“為它自身,平面曲線C上所有點的“伴隨點”所構(gòu)成的曲線定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點A的“伴隨點”是點,則點的“伴隨點”是點A
②單位圓的“伴隨曲線”是它自身;
③若曲線C關于x軸對稱,則其“伴隨曲線”關于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是_____________(寫出所有真命題的序列).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點為F1,F2,離心率為,且點在橢圓上.
(1)求橢圓C的標準方程;
(2)若直線l過點M(0,﹣2)且與橢圓C相交于A,B兩點,且△OAB(O為坐標原點)的面積為,求出直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的短軸長為,離心率為,過右焦點的直線與橢圓交于不同兩點,.線段的垂直平分線交軸于點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C的極坐標方程為(,a為常數(shù))),過點、傾斜角為的直線的參數(shù)方程滿足,(為參數(shù)).
(1)求曲線C的普通方程和直線的參數(shù)方程;
(2)若直線與曲線C相交于A、B兩點(點P在A、B之間),且,求和的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F1,F2是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且|PF1|<|PF2|,線段PF1的垂直平分線經(jīng)過點F2,若橢圓的離心率為e1,雙曲線的離心率為e2,則的最小值為( )
A.2B.﹣2C.6D.﹣6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com