(本小題滿分12分)
三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是邊長(zhǎng)為2的等邊三角形,D為AB邊中點(diǎn),且CC1="2AB."
(1)求證:平面C1CD⊥平面ABC;
(2)求證:AC1∥平面CDB1;
(3)求三棱錐D—CBB1的體積.
(1)證明見(jiàn)解析
(2)證明見(jiàn)解析
(3)
(1)證明:因?yàn)镃C1⊥平面ABC,
又CC1平面C1CD,
所以平面C1CD⊥平面ABC。  ………………4分
(2)證明:連結(jié)BC1交B1C于O,連結(jié)DO。
則O是BC1的中點(diǎn),
DO是△BAC1的中位線。
所以DO//AC1。 …………6分
因?yàn)镈O平面CDB1。  ………………8分
(3)解:因?yàn)镃C⊥平面ABC,
所以BB1⊥平面ABC,
所以BB1為三棱錐D—CBB1的高。  ………………10分

所以三棱錐D—CBB1的體積為   ………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)


 
棱長(zhǎng)為1的正方體中,P為DD1中點(diǎn),O1、O2、O3分別為面、面、面的中心。

(1)求證:。
(2)求異面直線PO3與O1O2所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


19. (本小題滿分12分)
如圖,直四棱柱ABCDA1B1C1D1的高為3,底面是邊長(zhǎng)為4且∠DAB = 60°的菱形,ACBD = OA1C1B1D1 = O1,EO1A的中點(diǎn).
(1) 求二面角O1BCD的大。
(2) 求點(diǎn)E到平面O1BC的距離.


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)、是三條不同的直線,、是三個(gè)不同的平面,則下列命題正確的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

符合下面哪種條件的多面體一定是長(zhǎng)方體
A.直平行六面體B.側(cè)面是矩形的四棱柱
C.對(duì)角面是全等的四棱柱D.底面是矩形的直棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

.體積為的球內(nèi)有一個(gè)內(nèi)接正三棱錐,球心恰好在底面正△內(nèi),一個(gè)動(dòng)點(diǎn)從點(diǎn)出發(fā)沿球面運(yùn)動(dòng),經(jīng)過(guò)其余三點(diǎn)后返回,則經(jīng)過(guò)的最短路程為_(kāi)_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在北緯圈上有甲、已兩地,甲地位于東徑,乙地位于西徑,則地球(半徑為R)表面上甲、乙兩地的最短距離為_(kāi)________                

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(如圖所示,四棱錐PABCD的底面ABCD是邊長(zhǎng)為a的正方形,側(cè)棱PA=a,PB=PD=a,則它的5個(gè)面中,互相垂直的面有         對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)如圖所示,空間直角坐標(biāo)系中,直三棱柱,,N、M分別是、的中點(diǎn)

(1)試畫(huà)出該直三棱柱的側(cè)視圖。并標(biāo)注出相應(yīng)線段長(zhǎng)度值
(2)求證:直線AN與BM相交,并求二面角的余弦值
 

查看答案和解析>>

同步練習(xí)冊(cè)答案